Сайдинг

Схема электронного трансформатора для галогенных ламп. Почему для электропитания светодиодного оборудования нельзя использовать электронные трансформаторы для галогенных ламп? Схема импульсного блока питания 12в галогенных ламп

Схема электронного трансформатора для галогенных ламп. Почему для электропитания светодиодного оборудования нельзя использовать электронные трансформаторы для галогенных ламп? Схема импульсного блока питания 12в галогенных ламп

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?». Для галогенок использовали электронные трансформаторы с выходным напряжением 12 вольт, а продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Что мы видим на схеме? Первое что бросается в глаза - отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и - 17Вольт. Такие изменения амплитуды с течением времени - повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация - есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются , рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами - транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем . Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

Принцип работы подобных ИИП мы рассматривали в статье ранее - .

5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика - они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Заключение


В статье описаны так называемые электронные трансформаторы, по сути, представляющие собой импульсные понижающие преобразователи для питания галогенных ламп, рассчитанных на напряжение 12 В. Предложены два варианта исполнения трансформаторов - на дискретных элементах и с применением специализированной микросхемы.

Галогенные лампы являются, по сути, более усовершенствованной модификацией обычной лампы накаливания. Принципиальное отличие заключается в добавлении в колбу лампы паров соединений галогенов, которые блокируют активное испарение металла с поверхности нити накала во время работы лампы. Это позволяет разогревать нить накала до более высоких температур, что даёт более высокую светоотдачу и более равномерный спектр излучения. Помимо этого, увеличивается срок службы лампы. Эти и другие особенности делают галогенную лампу весьма привлекательной для домашнего освещения, и не только. Промышленно выпускается широкий ассортимент галогенных ламп различной мощности на напряжение 230 и 12 В. Лампы с напряжением питания 12 В обладают лучшими техническими характеристиками и большим ресурсом по сравнению с лампами на 230 В, не говоря уже об электробезопасности. Для питания таких ламп от сети 230 В необходимо уменьшить напряжение. Можно, конечно, применить обычный сетевой понижающий трансформатор, но это дорого и нецелесообразно. Оптимальный выход - использовать понижающий преобразователь 230 В/12 В, часто называемый в таких случаях электронным трансформатором или галогенным конвертором (halogen convertor). О двух вариантах таких устройств и пойдёт речь в этой статье, оба рассчитаны на мощность нагрузки 20...105 Вт.

Один из наиболее простых и распространённых вариантов схемных решений для понижающих электронных трансформаторов - это полумостовой преобразователь с положительной обратной связью по току, схема которого приведена на рис. 1. При подключении устройства к сети конденсаторы С3 и С4 быстро заряжаются до амплитудного напряжения сети, формируя половинное напряжение в точке соединения. Цепь R5C2VS1 формирует запускающий импульс. Как только напряжение на конденсаторе С2 достигнет порога открывания динистора VS1 (24.32 В), он откроется и к базе транзистора VT2 будет приложено прямое напряжение смещения. Этот транзистор откроется, и ток потечёт по цепи: общая точка конденсаторов С3 и С4, первичная обмотка трансформатора Т2, обмотка III трансформатора Т1, участок коллектор - эмиттер транзистора VT2, минусовый вывод диодного моста VD1. На обмотке II трансформатора Т1 появится напряжение, поддерживающее транзистор VT2 в открытом состоянии, при этом к базе транзистора VT1 будет приложено обратное напряжение от обмотки I (обмотки I и II включены противофазно). Протекающий через обмотку III трансформатора Т1 ток быстро введёт его в состояние насыщения. Вследствие этого напряжение на обмотках I и II Т1 устремится к нулю. Транзистор VT2 начнёт закрываться. Когда он почти полностью закроется, трансформатор станет выходить из насыщения.

Рис. 1. Схема полумостового преобразователя с положительной обратной связью по току

Закрывание транзистора VT2 и выход из насыщения трансформатора Т1 приведут к изменению направления ЭДС и росту напряжения на обмотках I и II. Теперь к базе транзистора VT1 будет приложено прямое напряжение, ак базе VT2 - обратное. Транзистор VT1 начнёт открываться. Ток потечёт по цепи: плюсовой вывод диодного моста VD1, участок коллектор - эмиттер VT1, обмотка III Т1, первичная обмотка трансформатора Т2, общая точка конденсаторов С3 и С4. Далее процесс повторяется, а в нагрузке формируется вторая полуволна напряжения. После запуска диод VD4 поддерживает в разряженном состоянии конденсатор С2. Поскольку в преобразователе не используется сглаживающий оксидный конденсатор (в нём нет необходимости при работе на лампу накаливания, даже, наоборот, его присутствие ухудшает коэффициент мощ-ности устройства), то по окончании полупериода выпрямленного напряжения сети генерация прекратится. С приходом следующего полупериода генератор запустится снова. В результате работы электронного трансформатора на его выходе формируются близкие по форме к синусоидальным колебания частотой 30...35 кГц (рис. 2), следующие пачками с частотой 100 Гц (рис. 3).

Рис. 2. Близкие по форме к синусоидальным колебания частотой 30...35 кГц

Рис. 3. Колебания частотой 100 Гц

Важная особенность подобного преобразователя - он не запустится без нагрузки, поскольку при этом ток через обмотку III Т1 будет слишком мал, и трансформатор не войдёт в насыщение, процесс автогенерации сорвётся. Эта особенность делает ненужной защиту от режима холостого хода. Устройство с указанными на рис. 1 номиналами стабильно запускается при мощности нагрузки от 20 Вт.

На рис. 4 приведена схема усовершенствованного электронного трансформатора, в который добавлены помехоподавляющий фильтр и узел защиты от короткого замыкания в нагрузке. Узел защиты собран на транзисторе VT3, диоде VD6, стабилитроне VD7, конденсаторе C8 и резисторах R7-R12. Резкое увеличение тока нагрузки приведёт к увеличению напряжения на обмотках I и II трансформатора Т1 с 3...5 В в номинальном режиме до 9...10 В в режиме короткого замыкания. В результате на базе транзистора VT3 появится напряжение смещения 0,6 В. Транзистор откроется и зашунтирует конденсатор цепи запуска С6. В результате со следующим полупериодом выпрямленного напряжения генератор не запустится. Конденсатор С8 обеспечивает задержку отключения защиты около 0,5 с.

Рис. 4. Схема усовершенствованного электронного трансформатора

Второй вариант электронного понижающего трансформатора показан на рис. 5. Он более прост в повторении, поскольку в нём нет одного трансформатора, при этом более функционален. Это тоже полумостовой преобразователь, но под управлением специализированной микросхемы IR2161S. В микросхему встроены все необходимые защитные функции: от пониженного и повышенного напряжения сети, от режима холостого хода и короткого замыкания в нагрузке, от перегрева. Также IR2161S обладает функцией мягкого старта, который заключается в плавном нарастании напряжения на выходе при включении от 0 до 11,8 В в течение 1 с. Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы.

Рис. 5. Второй вариант электронного понижающего трансформатора

В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности (диммера), то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы - около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы. Когда напряжение на конденсаторе достигнет 5 В (приблизительно через 1 с после включения), частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц (60 кГц при 0 В - минимальное напряжение на выходе и 30 кГц при 5 В - максимальное).

Вход CS (вывод 4) микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока - резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2. Чтобы избежать этого, к входу CS через диод VD7 подключён резистивно-ёмкостный делитель C10R9. При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в .

Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта , выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога .

Согласно , число витков первичной обмотки равно

N I = (U c max ·t 0 max) / (2·S·B max),

где U c max - максимальное напряжение сети, В; t 0 max - максимальное время открытого состояния транзисторов, мкс; S - площадь поперечного сечения магнитопровода, мм 2 ; B max - максимальная индукция, Тл.

Число витков вторичной обмотки

где k - коэффициент трансформации, в нашем случае можно принять k = 10.

Чертёж печатной платы первого варианта электронного трансформатора (см. рис. 4) приведён на рис. 6, расположение элементов - на рис. 7. Внешний вид собранной платы показан на рис. 8. обложки. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные - на противоположной стороне платы. Большинство деталей (транзисторы VT1, VT2, трансформатор Т1, динистор VS1, конденсаторы С1-С5, С9, С10) подойдут от массовых дешёвых электронных балластов для люминесцентных ламп типа Т8, например, Tridonic PC4x18 T8, Fintar 236/418, Cimex CSVT 418P, Komtex EFBL236/418, TDM Electric EB-T8-236/418 и др., поскольку они имеют схожую схемотехнику и элементную базу. Конденсаторы С9 и С10 - металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 - любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В.

Рис. 6. Чертёж печатной платы первого варианта электронного трансформатора

Рис. 7. Расположение элементов на плате

Рис. 8. Внешний вид собранной платы

Трансформатор Т1 намотан на кольцевом магнитопроводе с магнитной проницаемостью 2300 ±15 %, его внешний диаметр - 10,2 мм, внутренний диаметр - 5,6 мм, толщина - 5,3 мм. Обмотка III (5-6) содержит один виток, обмотки I (1-2) и II (3-4) - по три витка провода диаметром 0,3 мм. Индуктивность обмоток 1-2 и 3-4 должна быть 10...15 мкГн. Выходной трансформатор Т2 намотан на магнитопроводе EV25/13/13 (Epcos) без немагнитного зазора, материал N27. Его первичная обмотка содержит 76 витков провода 5x0,2 мм. Вторичная обмотка содержит восемь витков литцендрата 100x0,08 мм. Индуктивность первичной обмотки равна 12 ±10 % мГн. Дроссель помехоподавляющего фильтра L1 намотан на маг-нитопроводе Е19/8/5, материал N30, каждая обмотка содержит по 130 витков провода диаметром 0,25 мм. Можно применить подходящий по габаритам стандартный двухобмоточный дроссель индуктивностью 30...40 мГн. Конденсаторы С1, С2 желательно применить Х-класса.

Чертёж печатной платы второго варианта электронного трансформатора (см. рис. 5) показан на рис. 9, расположение элементов - на рис. 10. Плата также изготовлена из фольгированного с одной стороны стеклотекстолита, элементы для поверхностного монтажа расположены со стороны печатных проводников, выводные - на противоположной стороне. Внешний вид готового устройства приведён на рис. 11 и рис. 12. Выходной трансформатор Т1 намотан накольцевом магнитопроводе R29.5 (Epcos), материал N87. Первичная обмотка содержит 81 виток провода диаметром 0,6 мм, вторичная - 8 витков провода 3x1 мм. Индуктивность первичной обмотки равна 18 ±10 % мГн, вторичной - 200 ±10 % мкГн. Трансформатор Т1 рассчитывался на максимальную мощность до 150 Вт, для подключения такой нагрузки транзисторы VT1 и VT2 необходимо установить на теплоотвод - алюминиевую пластину площадью 16...18 мм 2 , толщиной 1,5...2 мм. При этом, правда, потребуется соответствующая переделка печатной платы. Также выходной трансформатор можно применить от первого варианта устройства (потребуется добавить на плате отверстия под иное расположение выводов). Транзисторы STD10NM60N (VT1, VT2) можно заменить на IRF740AS или аналогичные. Стабилитрон VD2 должен быть мощностью не менее 1 Вт, напряжение стабилизации - 15,6...18 В. Конденсатор С12 - желательно дисковый керамический на номинальное постоянное напряжение 1000 В. Конденсаторы С13, С14 - металлопленочные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Каждую из резистивных цепей R4-R7, R14-R17, R18-R21 можно заменить одним выводным резистором соответствующих сопротивления и мощности, но при этом потребуется изменить печатную плату.

Рис. 9. Чертёж печатной платы второго варианта электронного трансформатора

Рис. 10. Расположение элементов на плате

Рис. 11. Внешний вид готового устройства

Рис. 12. Внешний вид собранной платы

Литература

1. IR2161 (S) & (PbF). Halogen convertor control IC. - URL: http://www.irf.com/product-info/datasheets/data/ir2161.pdf (24.04.15).

2. Peter Green. 100VA dimmable electronic convertor for low voltage lighting. - URL: http:// www.irf.com/technical-info/refdesigns/ irplhalo1e.pdf (24.04.15).

3. Ferrites and Accessories. - URL: http:// en.tdk.eu/tdk-en/1 80386/tech-library/ epcos-publications/ferrites (24.04.15).


Дата публикации: 30.10.2015

Мнения читателей
  • Веселин / 08.11.2017 - 22:18
    Какие электронные трансформаторы из представленных на рынке с им 2161 или подобные
  • Эдуард / 26.12.2016 - 13:07
    Здрвствуйте, можно ли вместо трансформатора на 160вт поставить на 180вт? Спасибо.
  • Михаил / 21.12.2016 - 22:44
    Я переделывал вот такие http://ali.pub/7w6tj
  • Юрий / 05.08.2016 - 17:57
    Здравствуйте! Нельзя ли узнать частоту переменного напряжения на выходе трансформатора для галогенных ламп? Спасибо.

На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.

Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.

Немного о трансформаторах

Рис.1: Трансформатор.

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку, ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

Как проверять электронные трансформаторы?

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Рис 2: Мультиметр.

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Диоды

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

Транзисторы

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Обмотка

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Конденсаторы (радиаторы)

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.

Ремонт электронного трансформатора

Пример 1

Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.

В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).

Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.

Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.

Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.

Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.

Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.

Пример 2

В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).

Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.

Для очистки совести я проверил все элементы, дорожки на плате, нигде не обнаружил обрывов.

Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.

Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).

Рис. 4: Галогеновая лампа на 50Ватт (упаковка).

После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.

Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).

Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.

В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Галогенные лампы можно считать усовершенствованным вариантом привычных всем приборов накаливания. Работают они одинаково, но в силу некоторых особенностей галогенок они более экономичны, долговечны и дают приятный для глаза, но при этом яркий свет.

Производители предлагают два варианта галогенных приборов освещения: высоко- и низкоковольтные. Чтобы вторые работали корректно, требуется трансформатор для галогенных ламп. Мы расскажем о том, как подобрать и грамотно подключить указанное устройство.

Галогенные лампы успешно конкурируют со светодиодами. Несмотря на лучшие эксплуатационные характеристики последних часто выигрывают именно галогенки, что объясняется их меньшей стоимостью и, соответственно, доступностью, а так же некоторыми особенностями светового пучка светодиодов, от которого могут уставать глаза.

Главный «козырь» светодиодов – работа без нагрева, что дает возможность их широкого использования. Такое же преимущество есть и у галогенок, но только у низковольтных ламп. Их можно устанавливать на участках, чувствительных к высокой температуре. Например, во встроенных в потолок светильниках.

Но при этом нужно понимать, что галогенные лампы пониженного напряжения смогут работать только с трансформаторами. Последние необходимы для преобразования сетевого напряжения до приемлемого для лампы показателя. Обычно это 12 В.

Помимо этого трансформатор защищает источник света от скачков напряжения, перегрева и короткого замыкания, а так же может обеспечивать возможность плавного включения освещения. Надо признать, что в среднем лампы с трансформаторами служат намного дольше. Хотя многое зависит от их качества.

Галогенные лампы низковольтного типа не способны работать от сетевого напряжения в 220 В, поэтому их необходимо подключать только через понижающий трансформатор

Какие бывают трансформаторы?

Трансформаторами называют устройства электромагнитного или электронного типа. Они несколько отличаются принципом работы и некоторыми другими характеристиками.

Электромагнитные варианты изменяют параметры стандартного сетевого напряжения на характеристики, пригодные для работы , электронные устройства кроме указанной работы выполняют еще преобразование тока.

Тороидальный электромагнитный прибор

Простейший тороидальный трансформатор собран из двух обмоток и сердечника. Последний называют еще магнитопроводом. Его изготавливают из ферромагнитного материала, обычно это сталь. Обмотки размещаются на стержне.

Первичная подключена к источнику энергии, вторичная, соответственно, к потребителю. Электрическая связь между вторичной и первичной обмотками отсутствует.

Несмотря на невысокую стоимость и надежность в эксплуатации тороидальный электромагнитный трансформатор сегодня редко используется при подключении галогенных ламп

Таким образом мощность между ними передается только электромагнитным путем. Для увеличения индуктивной связи между обмотками используется магнитопровод. При подаче переменного тока клемму, соединенную с первой обмоткой, он образует внутри сердечника магнитный поток переменного типа.

Последний сцепляется с обеими обмотками и индуцирует в них электродвижущую силу или ЭДС. Под ее воздействием во вторичной обмотке создается переменный ток с напряжением, отличным от того, что было в первичной.

В зависимости от числа витков устанавливается тип трансформатора, который может быть повышающим либо понижающим, и коэффициент трансформации. Для галогенных ламп всегда используются только понижающие аппараты.

Достоинствами обмоточных устройств считаются:

  • Высокая надежность в работе.
  • Простота в подключении.
  • Невысокая стоимость.

Тем не менее, тороидальные трансформаторы можно встретить в современных схемах с достаточно редко. Это объясняется тем, что в силу конструктивных особенностей такие устройства имеют довольно внушительные габариты и массу. Поэтому их сложно замаскировать при обустройстве мебельной или потолочной подсветки, например.

Пожалуй, главный недостаток тороидальных электромагнитных трансформаторов – массивность и значительные габариты. Их крайне сложно замаскировать, если необходима скрытая установка

Также к минусам устройств этого типа можно отнести нагрев в процессе функционирования и чувствительность к возможным перепадам напряжения в сети, что отрицательно сказывается на сроке эксплуатации галогенок.

Помимо этого обмоточные трансформаторы могут гудеть при работе, это не всегда приемлемо. Поэтому устройства используются большей частью в нежилых помещениях либо в производственных зданиях.

Импульсное или электронное устройство

Трансформатор состоит из магнитопровода или середчника и двух обмоток. В зависимости от формы сердечника и способа размещения на нем обмоток различают четыре разновидности таких устройств: стержневой, тороидальный, броневой и бронестрежневой.

Разным может быть и число витков вторичной и первичной намотки. Варьируя их соотношения, получают понижающие и повышающие устройства.

В конструкции импульсного трансформатора присутствуют не только обмотки с сердечником, но и электронная начинка. Благодаря этому в него можно встроить системы защиты от перегрева, плавного включения и другие

Принцип работы трансформатора импульсного типа несколько отличается. На первичную обмотку подаются короткие однополярные импульсы, благодаря этому сердечник постоянно находится в состоянии намагничивания.

Импульсы на первичной обмотке характеризуются как кратковременные сигналы прямоугольной формы. Они генерируют индуктивность с такими же характерными перепадами.

Они в свою очередь создают импульсы на вторичной катушке.

Эта особенность дает электронным трансформаторам целый ряд преимуществ:

  • Небольшой вес и компактность.
  • Высокий уровень КПД.
  • Возможность встроить дополнительную защиту.
  • Расширенный рабочий диапазон напряжения.
  • Отсутствие нагрева и шума при работе.
  • Возможность корректировки выходящего напряжения.

Из недостатков стоит отметить регламентируемую минимальную нагрузку и достаточно высокую цену. Последнее связано с определенными сложностями в процессе изготовления таких устройств.

Правила выбора понижающего оборудования

Подбирая трансформатор для источников света галогенного типа, нужно учесть множество факторов. Начать стоит с двух важнейших характеристик: выходного напряжения прибора и его номинальной мощности.

Первая должна строго соответствовать величине рабочего напряжения подключенных к устройству ламп. Вторая же определяет суммарную мощность источников света, с которыми будет работать трансформатор.

На корпусе трансформатора всегда присутствует маркировка, изучив которую можно получить полную информацию об устройстве

Для точного определения нужной номинальной мощности желательно произвести несложный расчет. Для этого нужно сложить мощности всех источников света, которые будут подключены к понижающему устройству. К полученной величине следует прибавить 20% «запаса», необходимого для корректной работы прибора.

Проиллюстрируем конкретным примером. Для освещения гостиной планируется установить три группы галогенных ламп: по семь штук в каждой. Это точечные приборы напряжением 12 В и мощностью в 30 Вт. Потребуется три трансформатора для каждой группы. Подберем подходящий. Начнем с расчета номинальной мощности.

Подсчитаем и получим, что общая мощность группы – 210 Вт. С учетом требуемого запаса получаем 241 Вт. Таким образом, для каждой группы потребуется трансформатор, выходное напряжение которого 12 В, номинальная мощность прибора 240 Вт.

Под эти характеристики подходят как электромагнитные, так и импульсные устройства. Останавливая свой выбор на последнем, нужно обратить особое внимание на номинальную мощность. Она должна быть представлена в виде двух цифр. Первая обозначает минимальную рабочую мощность.

Нужно знать, что общая мощность ламп должна быть больше этой величины, иначе прибор не будет работать. И небольшое замечание от специалистов, касающееся выбора мощности. Они предупреждают, что мощность трансформатора, которая указывается в технической документации, является максимальной.

То есть, в нормальном состоянии он будет выдавать где-то на 25-30% меньше. Поэтому так называемый «запас» мощности необходим. Потому что если заставить устройство работать на пределе возможностей, долго оно не прослужит.

Для продолжительной эксплуатации галогенных светильников очень важно грамотно выбрать мощность понижающего трансформатора. При этом она должна иметь некоторый “запас”, чтобы устройство не работало на пределе своих возможностей

Еще один важный нюанс касается размеров выбранного трансформатора и места его размещения. Чем мощнее прибор, тем он массивнее. Особенно это актуально для электромагнитных агрегатов. Желательно сразу найти подходящее место его установки.

Если светильников несколько пользователи чаще предпочитают разделить их на группы и установить для каждой отдельный трансформатор. Объясняется это очень просто.

Во-первых, при выходе из строя понижающего устройства остальные осветительные группы будут нормально работать. Во-вторых, каждый из установленных в таких группах трансформатор будет иметь меньшую мощность, чем общий, который нужно было бы поставить для всех ламп. Следовательно, его стоимость будет заметно ниже.

Два варианта подключения трансформатора

Перед подключением понижающего прибора следует выполнить схему расположения светильников, если их больше, чем два. Кроме того, нужно подобрать место монтажа трансформатора.

Последнее делается с учетом таких правил:

  • Должен быть обеспечен свободный доступ к устройству, что необходимо для его обслуживания или замены.
  • Если трансформатор будет находиться внутри замкнутого пространства, объем последнего не может быть меньше 10 л. Это необходимо для отвода образующегося при работе прибора тепла.
  • Расстояние от устройства до ближайшей галогенной лампы не должно быть меньше 250 мм. Это делается во избежание нежелательного дополнительного нагрева источника света.

Только после того, как определено место для трансформатора и для ламп, можно приступать к монтажу и подключению.

Важен правильный выбор места для установки понижающего трансформатора. Если он будет смонтирован в замкнутом пространстве, объем последнего должен быть достаточен для отведения образующегося при работе прибора тепла

В этом случае возможны два основных варианта, причем последний может быть модифицирован и использован для подключения не только двух групп светильников, но и трех и более.

Цепь светильников с одним трансформатором

Такой вариант считается оптимальным для четырех, максимум пяти источников света. Если ламп больше, лучше всего будет разделить и на группы. Галогенки подключаются только параллельно. Это нужно учесть при составлении схемы. Еще один важный нюанс.

Необходимо разместить лампы так, чтобы расстояние от каждой из них до трансформатора было примерно одинаковым. Это необходимо для корректной работы приборов.

При наличии разной по длине проводки лампы будут гореть неодинаково. Та, у которой провод короче, будет светить ярче. Прибор с длинным кабелем будет гореть тускло.

Кроме того, в последнем случае в процессе работы возможен еще и нагрев провода, что крайне нежелательно. Специалисты рекомендуют строить схему так, чтобы длина каждого из отходящих к лампам проводов не превышала 200 мм. При этом сечение кабеля должно быть не меньше 1,5 кв. мм.

Таким способом подключают небольшое количество ламп. Оптимально соединять не более пяти, иначе придется устанавливать трансформатор большой мощности

На корпусе трансформаторе находятся клеммы выхода и входа. Первичные маркируются как N и L или Input. Это вход, расположенный на стороне 220 В. Нужно помнить, что здесь подключение проводится через одноклавишный выключатель.

Далее отходящие от распредкоробки нулевой и фазный провода синего и оранжевого либо коричневого цвета соединяются с соответствующими клеммами трансформатора. К вторичным клеммам Output или выход понижающего устройства подключаются галогенные лампы.

Для этого используются только медные провода с одинаковым сечением. Важное замечание. Если по каким-либо причинам клемм трансформатора не хватает, следует установить дополнительные клеммные зажимы. Их можно приобрести в любом специализированном магазине.

Две группы ламп с двумя трансформаторами

Такое подключение оптимально, если светильников больше пяти. Группы могут состоять из одинакового количества ламп или разного. Это не важно. Главное, чтобы для каждой был правильно подобран трансформатор. Как и в описанном выше варианте начать стоит с выполнения схемы.

При выборе места расположения ламп «работают» аналогичные правила. То есть длина всех отходящих к ним от трансформатора проводов должна быть примерно одинакова.

Так подключаются две группы галогенных светильников. Для каждой из них используется свой трансформатор, но выключатель общий для обеих

Это может быть сделать достаточно сложно. Тогда потребуется провести некоторые корректировки. Нужно знать, что для проводов из меди сечением 1,5 кв. мм, а именно их и рекомендовано использовать в данном случае, оптимальная длина варьируется от 150 и до 300 см. На такое расстояние энергия будет передаваться с минимальными потерями и без образования помех.

Иногда такой длины явно недостаточно. В этом случае потребуется выбрать провод большего сечения. Для расстояния от 300 до 400 см выбирается кабель сечением до 2,5 кв. мм. Если предполагается еще большая длина, что нежелательно, следует провести специальный расчет и определить подходящее сечение по специальной таблице.

Подключение каждого из трансформаторов и групп ламп к нему производится аналогично выше описанному способу. То есть нулевая жила из распределительной коробки подключается к нулевым клеммам трансформаторов.

Фазная жила с выключателя соединяется с фазными же кабелями понижающих устройств. Теоретически таким способом можно подключить и более двух групп светильников, но для каждой из них устанавливается свой трансформатор.

Важное замечание. Для каждого из понижающих устройств прокладывается отдельный кабель, причем соединяются они исключительно внутри распределительной коробки. Некоторые «умельцы» предпочитают соединить провода где-нибудь под потолком, но не задействовать распредкоробку.

Это серьезная ошибка, противоречащая ПУЭ, где написано о том, что к каждому из выполненных участков соединения кабелей обязательно должен быть обеспечен свободный доступ для осмотра, обслуживания и возможного ремонта. Поэтому единственный правильный вариант – соединение в распределительной коробке.

В процессе создания галогенной подсветки с большим количеством ламп важно грамотно рассчитать количество осветительных групп и место расположения трансформаторов для каждой из них

Специалисты подчеркивают, что если предполагается подключение группы, состоящей из большого количества ламп, возможен вариант с размещением распределительной коробки между светильниками и выходом трансформатора. Это особенно актуально при недостатке клемм на понижающем устройстве или при ограничениях его размещения.

Выбирая такой вариант нужно знать, что при одинаковой мощности низковольтная цепь пропускает больший ток, чем высоковольтная. Исходя из этого требуется точный расчет для определения сечения провода. Производится оно путем вычисления общей силы тока.

Проиллюстрируем примером. Семь 12 В источников света мощностью в 35 Вт должны быть подключены через трансформатор. Лампы монтируются через распредкоробку параллельно. Нужно узнать , который будет проложен между распределителем и выходом блока.

Для этого сначала умножаем число лампочек на их мощность. Затем полученную величину делим на рабочее напряжение. Получаем приближенно 29 А. Это сила тока, который будет проходить через низковольтную проводку.

Используя представленную в ПУЭ таблицу зависимости сечения проводки от рабочего напряжения, определяем подходящий размер провода. В нашем случае это будет как минимум 4 кв. мм. Как видно, нагрузка достаточно велика. Возможно, есть смысл разделить эту группу ламп еще на две.

Если при подключении двух групп галогенных ламп поставить двухклавишный выключатель, можно получить возможность управлять каждой из них по отдельности

При монтаже двух групп галогеновых лампочек через трансформатор можно использовать два типа выключателей. Если поставить одноклавишную модель, то обе группы смогут включаться/выключаться только одновременно. Если же требуется отдельное управление группами световых приборов, можно поставить двухклавишный выключатель.

Практикующие электрики часто сталкиваются с необходимостью монтажа низковольтных галогенок, когда проводка уже проведена и успешно эксплуатируется. В таком случае далеко не всегда возможно осуществить параллельное подключение ламп к трансформатору без кардинальной переделки проводки.

Чтобы минимизировать затраты специалисты рекомендуют в этом случае соединить каждый светильник с собственным трансформатором. Как правило, это будут небольшие по мощности и габаритам устройства.

Если это кажется расточительством, можно поставить в светильники вместо низковольтных высоковольтные галогенки на 220 В. Но в этом случае придется снабдить их прибором плавного пуска. Или как вариант, если конструкция светильника позволяет, можно заменить галогенные лампы на светодиоды эконом-класса.

С ориентирами для устройства системы освещения ознакомит статья, досконально разбирающая все стороны вопроса.

Возможность регулировать интенсивность освещения привлекает многих. Большинство электронных трансформаторов дополнено возможностью снижения напряжения на входе, что позволяет регулировать яркость галогенного освещения

Очень часто планируется регулирование интенсивности освещения, для чего в общую схему добавляется . Нужно знать, что большинство импульсных трансформаторов не рассчитаны на совместную работу с диммером.

Поскольку последний отрицательно влияет на функционирование электронного преобразователя, это в конечном итоге заметно сокращает срок службы подключенных галогенных ламп.

Видео #3. Все, что нужно знать о трансформаторах для источников света галогенного типа:

Низковольтные галогенные лампы – практичное решение для обустройства встроенного освещения. Они считаются бюджетным аналогом светодиодам, значительно превосходя их в качестве излучаемого света.

Главная сложность использования низковольтных галогенок заключается в необходимости подключения понижающего трансформатора. Однако если сделать все правильно, осветительные приборы будут служить долго и без проблем.

Есть опыт по подключению трансформатора для работы маломощной галогенной лампочки? Знаете технологические тонкости, которые пригодятся посетителям сайта? Пишите, пожалуйста, комментарии, делитесь полезными сведениями, публикуйте фото в расположенном ниже блоке.

В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.

Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется "TRIGGER DIODE”, - это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста;
Защита от короткого замыкания нагрузки с автоматическим перезапуском;
Защита от токовой перегрузки с автоматическим перезапуском;
Качание рабочей частоты для снижения электромагнитных помех;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.


Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.


Чтоб задействовать электронный трансформатор в импульсном , нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.


Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.


Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя . Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП