Шпаклевка

Резистор 000 на что заменить. Про резисторы для начинающих заниматься электроникой. Современная маркировка резисторов

Резистор 000 на что заменить. Про резисторы для начинающих заниматься электроникой. Современная маркировка резисторов

При сборке любого устройства, даже самого простейшего, у радиолюбителей часто возникают проблемы с радиодеталями, бывает что не удается достать какой то резистор определенного номинала, конденсатор или транзистор… в данной статье я хочу рассказать про замену радиодеталей в схемах, какие радиоэлементы на что можно заменять и какие нельзя, чем они различаются, какие типы элементов в каких узлах применяют и многое другое. Большинство радиодеталей могут быть заменены на аналогичные, близкие по параметрам.

Начнем пожалуй с резисторов.

Итак, вам наверное уже известно, что резисторы являются самыми основными элементами любой схемы. Без них не может быть построена ни одна схема, но что же делать, если у вас не оказалось нужных сопротивлений для вашей схемы? Рассмотрим конкретный пример, возьмем к примеру схему светодиодной мигалки, вот она перед вами:

Для того чтобы понять, какие резисторы здесь в каких пределах можно менять, нам нужно понять, на что вообще они влияют. Начнем с резисторов R2 и R3 – они влияют (совместно с конденсаторами) на частоту мигания светодиодов, т.е. можно догадаться, что меняя сопротивления в большую или меньшую сторону, мы будем менять частоту мигания светодиодов. Следовательно, данные резисторы в этой схеме можно заменить на близкие по номиналу, если у вас не окажется указанных на схеме. Если быть точнее, то в данной схеме можно применить резисторы ну скажем от 10кОм до 50кОм. Что касается резисторов R1 и R4, в некоторой степени и от них тоже зависит частота работы генератора, в данной схеме их можно поставить от 250 до 470Ом. Тут есть еще один момент, светодиоды ведь бывают на разное напряжение, если в данной схеме применяются светодиоды на напряжение 1,5вольт, а мы поставим туда светодиод на большее напряжение – они у нас будут гореть очень тускло, следовательно, резисторы R1 и R4 нам нужно будет поставить на меньшее сопротивление. Как видите, резисторы в данной схеме можно заменить на другие, близкие номиналы. Вообще говоря, это касается не только данной схемы, но и многих других, если у вас при сборке схемы скажем не оказалось резистора на 100кОм, вы можете заменить его на 90 или 110кОм, чем меньше будет разница – тем лучше ставить вместо 100кОм 10кОм не стоит, иначе схема будет работать некорректно или вовсе, какой либо элемент может выйти из строя. Кстати, не стоит забывать что у резисторов допустимо отклонение номинала. Прежде чем резистор менять на другой, прочитайте внимательно описание и принцип работы схемы. В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов.

Теперь что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем - просто сгорит.

А заменить маломощный резистор более мощным – всегда пожалуйста, от этого ничего не будет, только мощные резисторы они более крупные, понадобится больше места на плате, или придется его поставить вертикально.

Не забывайте про параллельное и последовательное соединение резисторов, если вам нужен резистор на 30кОм, вы можете его сделать из двух резисторов по 15кОм, соединив последовательно.

В схеме что я дал выше, присутствует подстроечный резистор. Его конечно же можно заменить переменным, разницы никакой нет, единственное, подстроечный придется крутить отверткой. Можно ли подстроечные и переменные резисторы в схемах менять на близкие по номиналу? В общем то да, в нашей схеме его можно поставить почти любого номинала, хоть 10кОм, хоть 100кОм – просто изменятся пределы регулирования, если поставим 10кОм, вращая его мы быстрее будем менять частоту мигания светодиодов, а если поставим 100кОм., регулировка частоты мигания будет производиться плавнее и "длиннее" нежели с 10к. Иначе говоря, при 100кОм диапазон регулировки будет шире, чем при 10кОм.

А вот заменять переменные резисторы более дешевыми подстроечными не стоит. У них движок грубее и при частом использовании сильно царапается токопроводящий слой, после чего при вращении движка сопротивление резистора может меняться скачкообразно. Пример тому хрип в динамиках при изменении громкости.

Подробнее про виды и типы резисторов можно почитать .

Теперь поговорим про конденсаторы, они бывают разных видов, типов и конечно же емкостей. Все конденсаторы различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск. В радиоэлектронике применяют два типа конденсаторов, это полярные, и неполярные. Отличие полярных конденсаторов от неполярных заключается в том, что полярные конденсаторы нужно включать в схему строго соблюдая полярность. Конденсаторы по форме бывают радиальные, аксиальные (выводы у таких конденсаторов находятся сбоку), с резьбовыми выводами (обычно это конденсаторы большой емкости или высоковольтные), плоские и так далее. Различают импульсные, помехоподавляющие, силовые, аудио конденсаторы, общего назначения и др.

Где какие конденсаторы применяют?

В фильтрах блоков питания применяют обычные электролитические, иногда еще ставят керамику (служат для фильтрации и сглаживания выпрямленного напряжения), в фильтрах импульсных блоков питания применяют высокочастотные электролиты, в цепях питания - керамику, в некритичных цепях тоже керамику.

На заметку!

У электролитических конденсаторов обычно большой ток утечки, а погрешность емкости может составлять 30-40%, т.е. емкость указанная на банке, в реальности может сильно отличаться. Номинальная ёмкость таких конденсаторов уменьшается по мере их срока эксплуатации. Самый распространённый дефект старых электролитических конденсаторов – это потеря ёмкости и повышенная утечка, такие конденсаторы не стоит эксплуатировать дальше.

Вернемся мы к нашей схеме мультивибратора (мигалки), как видите там присутствуют два электролитических полярных конденсатора, они так же влияют на частоту мигания светодиодов, чем больше емкость, тем медленнее они будут мигать, чем меньше емкость, тем быстрее будут мигать.

Во многих устройствах и приборах нельзя так "играть" емкостями конденсаторов, к примеру если в схеме стоит 470 мкФ – то надо стараться поставить 470 мкФ, или же параллельно 2 конденсатора 220 мкФ. Но опять же, смотря в каком узле стоит конденсатор и какую роль он выполняет.

Рассмотрим пример на усилителе низкой частоты:

Как видите, в схеме присутствует три конденсатора, два из которых не полярные. Начнем с конденсаторов С1 и С2, они стоят на входе усилителя, через эти конденсаторы проходит/подается источник звука. Что будет если вместо 0.22 мкФ мы поставим 0.01 мкФ? Во первых немного ухудшится качество звучания, во вторых звук в динамиках станет заметно тише. А если мы вместо 0.22 мкФ поставим 1 мкФ – то на больших громкостях у нас появятся хрипы в динамиках, усилитель будет перегружаться, будет сильнее нагреваться, да и качество звука снова может ухудшиться. Если вы глянете на схему какого нибудь другого усилителя, можете заметить, что конденсатор на входе может стоять и 1 мкФ, и даже 10 мкФ. Все зависит от каждого конкретного случая. Но в нашем случае конденсаторы 0.22 мкФ можно заменять на близкие по значению, например 0.15 мкФ или лучше 0.33 мкФ.

Итак, дошли мы до третьего конденсатора, он у нас полярный, имеет плюс и минус, путать полярность при подключении таких конденсаторов нельзя, иначе они нагреются, что еще хуже, взорвутся. А бабахают они очень и очень сильно, может уши заложить. Конденсатор С3 емкостью 470 мкФ у нас стоит по цепи питания, если вы еще не в курсе, то скажу, что в таких цепях, и например в блоках питания чем больше емкость, тем лучше.

Сейчас у каждого дома имеются компьютерные колонки, может быть вы замечали, что если громко слушать музыку, колонки хрипят, а еще мигает светодиод в колонке. Это обычно говорит как раз о том, что емкость конденсатора в цепи фильтра блока питания маленькая (+ трансформаторы слабенькие, но об этом я не буду). Теперь вернемся к нашему усилителю, если мы вместо 470 мкФ поставим 10 мкФ – это почти то же самое что конденсатор не поставить вообще. Как я уже говорил, в таких цепях чем больше емкость, тем лучше, честно говоря в данной схеме 470 мкФ это очень мало, можно все 2000 мкФ поставить.

Ставить конденсатор на меньшее напряжение чем стоит в схеме нельзя, от этого он нагреется и взорвется, если схема работает от 12 вольт, то нужно ставить конденсатор на 16 вольт, если схема работает от 15-16 вольт, то конденсатор лучше поставить на 25 вольт.

Что делать, если в собираемой вами схеме стоит неполярный конденсатор? Неполярный конденсатор можно заменить двумя полярными, включив их последовательно в схему, плюсы соединяются вместе, при этом емкость конденсаторов должна быть в два раза больше чем указано на схеме.

Никогда не разряжайте конденсаторы замыкая их вывода! Всегда нужно разряжать через высокоомный резистор, при этом не касайтесь выводов конденсатора, особенно если он высоковольтный.

Практически на всех полярных электролитических конденсаторах на верхней части вдавлен крест, это своеобразная защитная насечка (часто называют клапаном). Если на такой конденсатор подать переменное напряжение или превысить допустимое напряжение, то конденсатор начнет сильно греться, а жидкий электролит внутри него начнет расширяться, после чего конденсатор лопается. Таким образом часто предотвращается взрыв конденсатора, при этом электролит вытекает наружу.

В связи с этим хочу дать небольшой совет, если после ремонта какой либо техники, после замены конденсаторов вы впервые включаете его в сеть (например в старых усилителях меняются все подряд электролитические конденсаторы), закрывайте крышку и держитесь на расстоянии, не дай бог что бабахнет.

Теперь вопрос на засыпку: можно ли включать в сеть 220вольт неполярный конденсатор на 230 вольт? А на 240? Только пожалуйста, сходу не хватайте такой конденсатор и не втыкайте его в розетку!

У диодов основными параметрами являются допустимый прямой ток, обратное напряжение и прямое падение напряжения, иногда еще нужно обратить внимание на обратный ток. Такие параметры заменяющих диодов должны быть не меньше, чем у заменяемых.

У маломощных германиевых диодов обратный ток значительно больше, чем у кремниевых. Прямое падение напряжения у большинства германиевых диодов примерно в два раза меньше чем у похожих кремниевых. Поэтому в цепях, где используется это напряжение для стабилизации режима работы схемы, например в некоторых оконечных усилителях звука, замена диодов на другой тип проводимости не допустима.

Для выпрямителей в блоках питания главными параметрами являются обратное напряжение и предельно допустимый ток. Например, при токах 10А можно применять диоды Д242…Д247 и похожие, для тока 1 ампер можно КД202, КД213, из импортных это диоды серии 1N4xxx. Ставить вместо 5 амперного диода 1 амперный конечно же нельзя, наоборот можно.

В некоторых схемах, например в импульсных блоках питания нередко применяют диоды Шоттки, они работают на более высоких частотах чем обычные диоды, обычными диодами такие заменять не стоит, они быстро выйдут из строя.

Во многих простеньких схемах в качестве замены можно поставить любой другой диод, единственное, не спутайте вывода, с осторожностью стоит к этому относиться, т.к. диоды так же могут лопнуть или задымиться (в тех же блоках питания) если спутать анод с катодом.

Можно ли диоды (в т.ч. диоды Шоттки) включать параллельно? Да можно, если два диода включить параллельно, протекающий через них ток может быть увеличен, сопротивление, падение напряжения на открытом диоде и рассеиваемая мощность уменьшаются, следовательно – диоды меньше будут греться. Параллелить диоды можно только с одинаковыми параметрами, с одной коробки или партии. Для маломощных диодов рекомендую ставить так называемый "токоуравнивающий" резистор.

Транзисторы делятся на маломощные, средней мощности, мощные, низкочастотные, высокочастотные и т.д. При замене нужно учитывать максимально допустимое напряжение эмиттер-коллектор, ток коллектора, рассеиваемая мощность, ну и коэффициент усиления.

Заменяющий транзистор, во первых, должен относиться к той же группе, что и заменяемый. Например, малой мощности низкой частоты или большой мощности средней частоты. Затем подбирают транзистор той же структуры: р-п-р или п-р-п, полевой транзистор с р-каналом или n-каналом. Далее проверяют значения предельных параметров, у заменяющего транзистора они должны быть не меньше, чем у заменяемого.
Кремниевые транзисторы рекомендуется заменять только кремниевыми, германиевые - германиевыми, биполярные – биполярными и т.д.

Давайте вернемся к схеме нашей мигалки, там применены два транзистора структуры n-p-n, а именно КТ315, данные транзисторы спокойно можно заменить на КТ3102, или даже на старенький МП37, вдруг завалялся у кого Транзисторов, способных работать в данной схеме очень и очень много.

Как вы думаете, будут ли работать в этой схеме транзисторы КТ361? Конечно же нет, транзисторы КТ361 другой структуры, p-n-p. Кстати, аналогом транзистора КТ361 является КТ3107.

В устройствах, где транзисторы используются в ключевых режимах, например в каскадах управления реле, светодиодов, в логических схемах и пр… выбор транзистора не имеет большого значения, выбирайте аналогичной мощности, и близкий по параметрам.

В некоторых схемах между собой можно заменять например КТ814, КТ816, КТ818 или КТ837. Возьмем для примера транзисторный усилитель, схема его ниже.

Выходной каскад построен на транзисторах КТ837, их можно заменить на КТ818, а вот на КТ816 уже не стоит менять, он будет очень сильно нагреваться, и быстро выйдет из строя. Кроме того, уменьшится выходная мощность усилителя. Транзистор КТ315 как вы уже наверное догадались меняется на КТ3102, а КТ361 на КТ3107.

Мощный транзистор можно заменить двумя маломощными того же типа, их соединяют параллельно. При параллельном соединении, транзисторы должны применяться с близкими значениями коэффициента усиления, рекомендуется ставить выравнивающие резисторы в эмиттерной цепи каждого, в зависимости от тока: от десятых долей ома при больших токах, до единиц ом при малых токах и мощностях. В полевых транзисторах такие резисторы обычно не ставятся, т.к. у них положительный ТКС канала.

Думаю, на этом закончим, в заключении хочу сказать, что вы всегда сможете попросить помощи у Google, он вам всегда подскажет, даст таблицы по замене радиодеталей на аналоги. Удачи!

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы .

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 - 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип - резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

Часто во время внешнего осмотра можно обнаружить повреждение лакового или эмалевого покрытия. Резистор с обуглившейся поверхностью или с колечками на ней также неисправен. Небольшое потемнение лакового покрытия допустимого у таких резисторов следует проверить величину сопротивления. Допустимое отклонение от номинальной величины не должно превышать ±20 %. Отклонение величины сопротивления от номинала в сторону возрастания наблюдается при длительной эксплуатации у высокоомных резисторов (более 1 МОм).

В ряде случае обрыв токопроводящего элемента не вызывает никаких изменений внешнего вида резистора. Поэтому проверку резисторов на соответствие их величин номинальным значениям производят с помощью омметра. Перед измерением сопротивления резисторов в схеме следует выключить приемник и разрядить электролитические конденсаторы. При измерении необходимо обеспечить надежный контакт между выводами проверяемого резистора и зажимами прибора. Чтобы не шунтировать прибор, не следует касаться руками металлических частей щупов омметра. Величина измеренного сопротивления должна соответствовать тому номиналу, который обозначен на корпусе резистора с учетом допуска, соответствующего классу данного резистора и собственной погрешности измерительного прибора. Например, при измерении сопротивления резистора I класса точности с помощью прибора Ц-4324 суммарная погрешность во время измерения может достигать ±15 % (допуск резистора ±5 % плюс погрешность прибора ±10). Если резистор проверяется без. выпаивания его из схемы, то необходимо учитывать влияние шунтирующих цепей.

Наиболее часто встречающаяся неисправность у резисторов- пе регорание токопроводящего слоя, которое может быть вызвано прохождением через резистор недопустимо большого тока в результате различных замыканий в монтаже или пробоя конденсатора. Проволочные резисторы значительно реже выходят из строя. Основные неисправности их (обрыв или перегорание проволоки) обычно находят при помощи омметра.

Переменные резисторы (потенциометры) чаще всего имеют нарушения контакта подвижной щетки с токопроводящими элементами резистора. Если такой потенциометр используется в радиоприёмнике для регулировки громкости, то при повороте его оси в головке динамического громкоговорителя слышны трески. Встречаются также обрывы, износ или повреждение токопроводящего слоя.

Исправность потенциометров определяют омметром. Для этого подключают один из щупов омметра к среднему лепестку потенциометра, а второй щуп - к одному из крайних лепестков. Ось регулятора при каждом таком подключении очень медленно вращают. Если потенциометр исправен, то стрелка омметра перемещается вдоль шкалы плавно, без дрожания и рывков. Дрожание и рывки стрелки свидетельствуют о плохом контакте щетки с токопроводящим элементом. Если стрелка омметра вообще не отклоняется, это означает, что резистор неисправен. Такую проверку рекомендуется повторить, переключив второй щуп омметра ко второму крайнему лепестку резистора, чтобы убедиться в исправности и этого вывода. Неисправный потенциометр необходимо заменить новым или отремонтировать, если это возможно. Для этого вскрывают корпус потенциометра и тщательно промывают спиртом токопроводящий элемент и наносят тонкий слой машинного масла. Затем его собирают и вновь проверяют надежность контакта.

Резисторы, признанные непригодными, обычно заменяются исправными, величины которых подбирают так, чтобы они соответствовали принципиальной схеме приемника. При отсутствии резистора с соответствующим сопротивлением его можно заменить двумя (или несколькими) параллельно или последовательно соединенными. При параллельном соединении двух резисторов общее сопротивление цепи можно рассчитать по формуле

где Р - рассеиваемая на резисторе мощность, Вт; U - напряжение на резисторе,. В; R - величина сопротивления резистора; Ом.

Желательно взять резистор с несколько большей мощностью рассеяния (на 30,..40 %), чем полученная при расчете. При отсутствии резистора требуемой мощности можно подобрать несколько резисторов меньшей. мощности и соединить их между собой параллельно или последовательно с таким расчетом, чтобы их общее сопротивление оказалось равным заменяемому, а общая мощность не ниже требуемой.

При определении взаимозаменяемости различных типов постоянных и переменных резисторов для последних учитывают также характеристику изменения сопротивления от угла поворота его оси. Выбор характеристики изменения потенциометра определяют его схемным назначением. Например, чтобы получить равномерное регулирование громкости радиоприемника, следует выбирать потенциометры группы В (с показательной зависимостью изменения сопротивления), а в цепях регулировки тембра - группы А.

При замене вышедших из строя резисторов типа ВС можно рекомендовать резисторы типа МЛТ соответствующей мощности рассеяния, имеющие меньшие габариты и лучшую влагоустойчивость. Номинальная мощность резистора и класс его точности не имеют существенного значения в цепях управляющих сеток ламп и коллекторов транзисторов малой мощности.

(постоянными резисторами), а в этой части статьи поговорим о , или переменных резисторах .

Резисторы переменного сопротивления , или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные .

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0 ; 2,2 ; 3,3 ; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0 ; 2,0 ; 3,0 ; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные : у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования . А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры , сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а ) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б ) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления . В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — .
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.