Материалы

Простой двухтактный инвертор. Преобразователи постоянного напряжения Простой двухтактный преобразователь напряжения

Простой двухтактный инвертор. Преобразователи постоянного напряжения Простой двухтактный преобразователь напряжения
0

Двухтактные преобразователи могут быть с самовозбуждением и с независимым возбуждением. В настоящее время в основном применяют преобразователи с независимым возбуждением, имеющие более высокий КПД. На практике применяют три основных схемы двухтактных преобразователей: с выводом нейтральной точки первичной обмотки трансформатора (со средней точкой), полумостовые и мостовые. Трансформатор, входящий в состав преобразователя имеет две идентичные первичные обмотки с числом витков W 11 = W 12 = W 1 и две идентичные вторичные обмотки с числом витков W 21 = W 22 = W 2 .

Рассмотрим установившийся режим работы идеального преобразователя в случае безразрывных токов дросселя L при широтно-импульсном управлении транзисторами VT1 и VT2. При переводе СУ транзистора VT1 в режим насыщения к первичной обмотке W 11 трансформатора будет приложено напряжение источника энергии U 0 .

В результате на зажимах вторичной обмотки W 21 появится ЭДС Е 2 с полярностью, обеспечивающей открытие диода VD1. При этом на интервале открытого состояния VT1 все остальные диоды и транзистор VТ2 будут закрыты.

Поскольку ЭДС Е 2 = U 0 n 21 = U 0 W 2 /W 1 , то к обмотке дросселя L будет приложено напряжение, равное U 0 n 21 - U н. Под действием этого напряжения ток в обмотке дросселя L будет нарастать до линейному закону от минимального до максимального значения, соответствующего моменту времени t = γТ, когда СУ переведет транзистор VT1 в закрытое состояние.

На этом временном интервале осуществляется передача энергии в нагрузку, накопление энергии в дросселе L и подзаряд конденсатора С1. При этом напряжение, приложенное к закрытому транзистору VT2, оказывается равным 2U 0 . При запирании транзистора VT1 меняется полярность ЭДС на зажимах всех обмоток трансформатора, что приводит к запиранию диода VD1 и открыванию диода VD3. В результате к обмотке дросселя будет приложено напряжение, равное напряжению на нагрузке, и он будет отдавать ранее запасенную энергию в нагрузку и конденсатор С1 (пока ток дросселя будет больше тока нагрузки). При этом напряжение, приложенное к закрытым транзисторам VT1 и VT2, оказывается равным напряжению источника энергии U 0 , так как трансформатор оказывается в режиме короткого замыкания (при отключенной первичной обмотки от источника энергии).

В момент t/T = 0,5 СУ переводит транзистор VT2 в открытое состояние, в результате чего первичная обмотка W 12 трансформатора (находящегося в режиме короткого замыкания) подключается к источнику энергии. Это приводит к резкому увеличению тока в обмотках W 22 и W 12 трансформатора. В момент, когда ток в обмотке W 22 достигает значения тока дросселя L, начинается процесс запирания диода VD3. На интервале 0,5Т ≤ t ≤ (0 5 + γ)Т транзистор УТ2 открыт и находится в режиме насыщения, а ток дросселя опять нарастает от минимального до максимального значения.

Регулировочная характеристика данного преобразователя имеет следующий вид: U H = 2n 21 γU 0 .

Как видно из выражения, регулировочная характеристика данного преобразователя отличается от регулировочной характеристики однотактного преобразователя с прямым включением диода только множителем 2. Однако в последнем случае требуется два отдельных трансформатора, расчетная мощность каждого из которых в два раза меньше мощности трансформатора двухтактного преобразователя. Кроме того, следует помнить, что перемагничивание материала магнитопровода в однотактных преобразователях с прямым включением диода осуществляется по частному несимметричному циклу перемагничивания, тогда как в данном идеальном преобразователе перемагничивание осуществляется по частному симметричному циклу. Поэтому размеры трансформатора в двухтактном преобразователе будут меньшими по сравнению с размерами двух трансформаторов однотактных преобразователей.

Выражение для критического значения индуктивности L кp дросселя L, обеспечивающей безразрывность тока дросселя при минимальном значении тока нагрузки J н min принимает для двухтактного преобразователя (или двух однотактных, работающих на общий фильтр) следующий вид:

Разница в работе будет заключаться в только том, что на интервалах закрытого состояния транзисторов оба диода на выходе преобразователя (VD1, VD2) будут открыты и через каждый из них будет замыкаться ток, равный половине тока дросселя. Например, широко применяемые в системах электропитания аппаратуры телекоммуникаций вольтодобавочные (стабилизирующие) преобразователи КВ-12/100 (КС-14/100) представляют собой рассматриваемый двухтактный преобразователь в варианте без диода VD3.

В реальных двухтактных преобразователях, работающих на частотах 20 кГц и выше, неодинаковое значение времени рассасывания избыточных носителей в транзисторах при их запирании приводит к тому, что приращение магнитного потока в трансформаторе на интервале открытого состояния одного транзистора отличается от приращения магнитного потока на интервале открытого состояния другого транзистора. В результате в двухтактных преобразователях может появиться так называемое одностороннее подмагничивание материла магнитопровода трансформатора. И, как результат, насыщение материала магнитопровода и короткое замыкание для источника энергии, приводящее к выходу из строя транзисторов. Другой причиной появления одностороннего подмагничивания является электрическая несимметрия схемы, возникающая, как правило, при низких уровнях выходного напряжения. Для того чтобы исключить явление одностороннего подмагничивания, приходится прибегать к существенному усложнению схемы управления в двухтактных преобразователях по сравнению с однотактными. С этой целью в схему управления вводится, например, устройство, следящее за средним значением токов транзисторов и при их разбалансировке обеспечивающее автоматическую коррекцию длительности включенного состояния транзисторов.

Рассмотренный преобразователь на практике применяется при относительно невысоких напряжениях источника энергии, так как напряжение, приложенное к закрытому транзистору, оказывается в два раза больше напряжения источника энергии. При высоком значении напряжения U 0 (в несколько сотен вольт) широко применяются полумостовые и мостовые схемы двухтактных преобразователей.

В полумостовом преобразователе параллельно источнику энергии с напряжением U 0 устанавливаются два последовательно соединенных между собой конденсатора с одинаковой емкостью. Первичная обмотка трансформатора TV1 включается между общей точкой этих конденсаторов и общей точкой транзисторов VT1 и VT2.

В идеальном преобразователе среднее значение напряжения на каждом из конденсаторов равно половине напряжения U 0 . При переводе СУ, например, транзистора VT1 в режим насыщения напряжение, приложенное к первичной обмотке трансформатора TV1, будет равно напряжению на конденсаторе С1. В результате ЭДС Е 2 на зажимах вторичной обмотки VT1 будет равна U 0 n 21 /2. При этом будут открыты диоды VD3 и VD6. Напряжение, приложенное к закрытому транзистору VT2, равное сумме напряжения на конденсаторе С2 и ЭДС первичной обмотки TV1, будет равно напряжению U 0 . Для того чтобы исключить интервалы, на которых оба транзистора открыты одновременно, длительности открытого состояния VT1 и VT2 должны быть меньше половины периода преобразования энергии. На интервалах открытого состояния VT1 (VT2) осуществляется передача энергии а нагрузку и ее накопление в дросселе L1 и конденсаторе С3. Кривые тока коллектора транзисторов, тока дросселя L1, напряжения на входе фильтра L1 С3 и напряжения на нагрузке по форме полностью совпадают с соответствующими кривыми. На интервалах выключенного состояния транзисторов открыты все четыре диода выходного выпрямителя и через каждый из них протекает ток, равный половине тока дросселя, при этом напряжение приложенное к закрытым транзисторам равно U 0 /2. Регулировочная характеристика полумостового преобразователя (при его работе в режиме безразрывных токов дросселя L1) имеет следующий вид: U H = γU 0 n 21 .

Выражение для критического значения индуктивности L кp дросселя L, обеспечивающей безразрывность тока дросселя при минимальном значении тока нагрузки I н min принимает для полумостового преобразователя следующий вид:

Полумостовые преобразователи обычно применяются при выходной мощности до нескольких сотен ватт, так как с увеличением выходной мощности резко увеличиваются габаритные размеры конденсаторов C1, С2. Кроме того, при прочих равных условиях ток коллектора транзисторов в полумостовых преобразователях в два раза больше, чем в мостовых преобразователях, что приводит к большим потерям в них и к увеличению габаритов радиаторов охлаждения транзисторов.

В мостовом преобразователе при классическом, так называемом симметричном способе управления транзисторами СУ обеспечивает синхронную коммутацию диагональных транзисторов (VT1 и VT4 на интервале первой половины периода, а затем VT2 и VT3 на интервале второй половины периода преобразования энергии). При этом на интервале открытого состояния любой пары диагональных транзисторов напряжение, приложенное к первичной обмотке TV1 и к каждому из закрытых транзисторов в идеальном преобразователе равно напряжению источника энергии. В остальном работа мостового преобразователя при симметричном способе управления транзисторами подобна работе рассмотренных выше двухтактных преобразователей.

В интервале открыты диагональные транзисторы VT1 и VT4, в результате ток i 1 , равный сумме намагничивающего тока (тока холостого хода) трансформатора и тока дросселя: L1, приведенного к первичной обмoтке, втекает в начало первичной обмотки TV, открыт выходной диод VD5 и осуществляется передача энергии в нагрузку и ее накопление дросселями L1 и L. При этом напряжение на конденсаторах С2 и С3. равно напряжению U 0 . В момент t 1 схема управления выключает VT4, вследствии чего ток i 1 начинает замыкаться по цепи: первичная обмотка TV (в том же направлении) - конденсатор С3 - открытый транзистор VT1 - дроссель L. Начинается быстрый процесс перезаряда конденсатора С3 и заряд конденсатора С4. За время, меньшее t зад, напряжение на конденсаторе С3 уменьшается до нуля, а на конденсаторе С4 нарастает до U 0 . После того как напряжение на С3 снизилось до нуля, открывается диод VD3 и ток i 1 далее замыкается через этот диод, так что к моменту t 2 - моменту открытия VT3 - напряжение на нем равно практически нулю, т. е. отсутствуют потери мощности при его открытии. В интервале первичная обмотка TV и дроссель L оказываются закороченными диодом VD3 и транзистором VT1, так что ток в этой цепи практически не претерпевает изменений. В момент t 3 выключается транзистор VT1 и начинается быстрый перезаряд конденсатора С2 (и заряд конденсатора С1), так что за время, меньшее t зад, напряжение на C2 спадает до нуля, после чего открывается диод VD2. До момента t 4 - момента открытия транзистора VT2 - ток, поддерживаемый дросселем L, замыкается через диоды VD2, VD3 и источник энергии U 0 , т. е. энергия, запасенная этим дросселем, возвращается в источник. Включение VT2 также происходит без потерь мощности. На интервале открыты VT2 и УТ3, ток i 1 меняет свое направление, открыт выходной диод VD6 и энергия передается от источника в нагрузку, а также запасается дросселями. Далее процессы в схеме протекают аналогичным образом.

Для исключения явления одностороннего подмагничивания трансформатора в полумостовых и мостовых ПН последовательно с первичной обмоткой трансформатора достаточно часто включается конденсатор. Такое введение конденсатора имеет место, например, в ПН блоков питания ПК, в выпрямителях ВБВ-60/25-3к.

На выходе любого из рассмотренных двухтактных преобразователей выходной выпрямитель может быть выполнен либо по однофазной мостовой схеме, либо по двухполупериодной схеме выпрямления. Однофазная мостовая схема выпрямления обычно применяется только при относительно высоких уровнях выходного напряжения (несколько десятков вольт и выше), так как характеризуется большими потерями в вентильном комплекте по сравнению с двухполупериодной схемой.

Используемая литература: Электропитание устройств и систем телекоммуникаций:
Учебное пособие для вузов / В. М. Бушуев, В. А. Демянский,
Л. Ф. Захаров и др. - М.: Горячая линия-Телеком, 2009. -
384 с.: ил.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Принципиальные схемы простых преобразователей напряжения на основе автогенераторов, построены с использованием транзисторов.

В генераторах с самовозбуждением (автогенераторах) для возбуждения электрических колебаний обычно используется положительная обратная связь. Существуют также автогенераторы на активных элементах с отрицательным динамическим сопротивлением, однако в качестве преобразователей они практически не используются.

Однокаскадные преобразователи напряжения

Наиболее простая схема однокаскадного преобразователя напряжения на основе автогенератора показана на рис. 1. Этот вид генераторов получил название блокинг-генераторов. Фазовый сдвиг для обеспечения условия возникновения колебаний в нем обеспечивается определенным включением обмоток.

Рис. 1. Схема преобразователя напряжения с трансформаторной обратной связь.

Аналог транзистора 2N3055 — КТ819ГМ. Блокинг-генератор позволяет получать короткие импульсы при большой скважности. По форме эти импульсы приближаются к прямоугольным.

Емкости колебательных контуров блокинг-гене-ратора, как правило, невелики и обусловлены межвитковыми емкостями и емкостью монтажа. Предельная частота генерации блокинг-генератора — сотни кГц. Недостатком этого вида генераторов является выраженная зависимость частоты генерации от изменения питающего напряжения.

Резистивный делитель в цепи базы транзистора преобразователя (рис. 1) предназначен для создания начального смещения. Несколько видоизмененный вариант преобразователя с трансформаторной обратной связью представлен на рис. 2.

Рис. 2. Схема основного (промежуточного) блока источника высоковольтного напряжения на основе автогенераторного преобразователя.

Автогенератор работает на частоте примерно 30 кГц. На выходе преобразователя формируется напряжение амплитудой до 1 кВ (определяется числом витков повышающей обмотки трансформатора).

Трансформатор Т1 выполнен на диэлектрическом каркасе, вставляемом в броневой сердечник Б26 из феррита М2000НМ1 (М1500НМ1). Первичная обмотка содержит 6 витков; вторичная обмотка — 20 витков провода ПЭЛШО диаметром 0,18 мм (0,12...0,23 мм).

Повышающая обмотка для достижения выходного напряжения величиной 700...800 В имеет примерно 1800 витков провода ПЭЛ диаметром 0,1 мм. Через каждые 400 витков при намотке укладывается диэлектрическая прокладка из конденсаторной бумаги, слои пропитывают конденсаторным или трансформаторным маслом. Места выводов катушки заливают парафином.

Этот преобразователь может быть использован в качестве промежуточного для питания последующих ступеней формирования высокого напряжения (например с электрическими разрядниками или тиристорами).

Следующий преобразователь напряжения (США) также выполнен на одном транзисторе (рис. 3). Стабилизация напряжения смещения базы осуществляется тремя последовательно включенными диодами VD1 — VD3 (прямое смещение).

Рис. 3. Схема преобразователя напряжения с трансформаторной обратной связью.

Коллекторный переход транзистора VT1 защищен конденсатором С2, кроме того, параллельно коллекторной обмотке трансформатора Т1 подключена цепочка из диода VD4 и стабилитрона VD5.

Генератор вырабатывает импульсы, по форме близкие к прямоугольным. Частота генерации составляет 10 кГц и определяется величиной емкости конденсатора СЗ. Аналог транзистора 2N3700 — КТ630А.

Двухтактные преобразователи напряжения

Схема двухтактного трансформаторного преобразователя напряжения показана на рис. 4. Аналог транзистора 2N3055 — КТ819ГМ. Трансформатор высоковольтного преобразователя (рис. 4) может быть выполнен с использованием ферритового незамкнутого сердечника круглого или прямоугольного сечения, а также на основе телевизионного строчного трансформатора.

При использовании ферритового сердечника круглой формы диаметром 8 мм число витков высоковольтной обмотки в зависимости от требуемой величины выходного напряжения может достигать 8000 витков провода диаметром 0,15...0,25 мм. Коллекторные обмотки содержат по 14 витков провода диаметром 0,5...0,8 мм.

Рис. 4. Схема двухтактного преобразователя с трансформаторной обратной связью.

Рис. 5. Вариант схемы высоковольтного преобразователя с трансформаторной обратной связью.

Обмотки обратной связи (базовые обмотки) содержат по 6 витков такого же провода. При подключении обмоток следует соблюдать их фазировку. Выходное напряжение преобразователя — до 8 кВ.

В качестве транзисторов преобразователя могут быть использованы транзисторы отечественного производства, например, КТ819 и им подобные.

Вариант схемы аналогичного преобразователя напряжения показан на рис. 5. Основное различие заключается в цепях подачи смещения на базы транзисторов.

Число витков первичной (коллекторной) обмотки — 2x5 витков диаметром 1,29 мм, вторичной — 2x2 витков диаметром 0,64 мм. Выходное напряжение преобразователя целиком определяется числом витков повышающей обмотки и может достигать 10...30 кВ.

Преобразователь напряжения А. Чаплыгина не содержит резисторов (рис. 6). Он питается от батареи напряжением 5 6 и способен отдавать в нагрузку до 1 А при напряжении 12 В.

Рис. 6. Схема простого высокоэффективного преобразователя напряжения с питанием от батареи 5 В.

Диодами выпрямителя служат переходы транзисторов автогенератора. Устройство способно работать и при пониженном до 1 В напряжении питания.

Для маломощных вариантов преобразователя можно использовать транзисторы типа КТ208, КТ209, КТ501 и другие. Максимальный ток нагрузки не должен превышать максимального тока базы транзисторов.

Диоды VD1 и VD2 — не обязательны, однако позволяют получить на выходе дополнительное напряжение 4,2 В отрицательной полярности. КПД устройства около 85%. Трансформатор Т1 выполнен на кольце К18x8x5 2000НМ1. Обмотки I и II имеют по 6, III и IV — по 10 витков провода ПЭЛ-2 0,5.

Преобразователь по схеме индуктивной трехточки

Преобразователь напряжения (рис. 7) выполнен по схеме индуктивной трехточки и предназначен для измерений высокоомных сопротивлений и позволяет получить на выходе не-стабилизированное напряжение 120... 150 В.

Потребляемый преобразователем ток около 3...5 мА при напряжении питания 4,5 В. Трансформатор для этого устройства может быть создан на основе телевизионного трансформатора БТК-70.

Рис. 7. Схема преобразователя напряжения по схеме индуктивной трехтонки.

Его вторичную обмотку удаляют, взамен нее наматывают низковольтную обмотку преобразователя — 90 витков (два слоя по 45 витков) провода ПЭВ-1 0,19...0,23 мм. Отвод от 70-го витка снизу по схеме. Резистор R1 — величиной 12...51 кОм.

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. 8) представляет собой однотактный релаксационный генератор с емкостной положительной обратной связью (С2, СЗ). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и СЗ, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и СЗ в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

Преобразователь напряжения с ШИМ управлением

На рис. 9 показана схема преобразователя стабилизированного напряжения с широтно-импульсным управлением. Преобразователь сохраняет работоспособность при уменьшении напряжения батареи с 9.... 12 до 3В. Такой преобразователь оказывается наиболее пригодным при батарейном питании аппаратуры.

КПД стабилизатора — не менее 70%. Стабилизация сохраняется при уменьшении напряжения источника питания ниже выходного стабилизированного напряжения преобразователя, чего не может обеспечить традиционный стабилизатор напряжения. Принцип стабилизации, использованный в данном преобразователе напряжения.

Рис. 9. Схема преобразователя стабилизированного напряжения с ШИМ управлением.

При включении преобразователя ток через резистор R1 открывает транзистор ѴТ1, коллекторный ток которого, протекая через обмотку II трансформатора Т1, открывает мощный транзистор ѴТ2. Транзистор ѴТ2 входит в режим насыщения, и ток через обмотку I трансформатора линейно увеличивается.

В трансформаторе происходит накопление энергии. Через некоторое время транзистор ѴТ2 переходит в активный режим, в обмотках трансформатора возникает ЭДС самоиндукции, полярность которой противоположна приложенному к ним напряжению (магнитопровод трансформатора не насыщается).

Транзистор ѴТ2 лавинообразно закрывается и ЭДС самоиндукции обмотки I через диод VD2 заряжает конденсатор СЗ. Конденсатор С2 способствует более четкому закрыванию транзистора. Далее процесс повторяется.

Через некоторое время напряжение на конденсаторе СЗ увеличивается настолько, что открывается стабилитрон VD1, и базовый ток транзистора ѴТ1 уменьшается, при этом уменьшается ток базы, а значит, и коллекторный ток транзистора ѴТ2.

Поскольку накопленная в трансформаторе энергия определяется коллекторным током транзистора ѴТ2, дальнейшее увеличение напряжения на конденсаторе СЗ прекращается. Конденсатор разряжается через нагрузку. Таким образом на выходе преобразователя поддерживается постоянное напряжение. Выходное напряжение задает стабилитрон VD1. Частота преобразования изменяется в пределах 20... 140 кГц.

Преобразователь напряжения 3-12В/+15В, -15В

Преобразователь напряжения, схема которого показана на рис. 10, отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько вторичных стабильных напряжений. Использование интегрирующего звена в цепи обратной связи позволяет улучшить стабилизацию вторичного напряжения.

Рис. 10. Схема преобразователя стабилизированного напряжения с биполярным выходом 15+15В.

Частота преобразования уменьшается почти линейно при уменьшении питающего напряжения. Это обстоятельство усиливает обратную связь в преобразователе и повышает стабильность вторичного напряжения.

Напряжение на сглаживающих конденсаторах вторичных цепей зависит от энергии импульсов, получаемых от трансформатора. Наличие резистора R2 делает напряжение на накопительном конденсаторе С3 зависимым и от частоты следования импульсов, причем степень зависимости (крутизна) определяется сопротивлением этого резистора.

Таким образом, подстроечным резистором R2 можно устанавливать желаемую зависимость изменения напряжения вторичных обмоток от изменения напряжения питания. Полевой транзистор ѴТ2 — стабилизатор тока. КПД преобразователя может доходить до 70... 90%.

Нестабильность выходного напряжения при напряжении питания 4... 12 В не более 0,5%, а при изменении температуры окружающего воздуха от -40 до +50°С — не более 1,5%. Максимальная мощность нагрузки — 2 Вт.

При налаживании преобразователя резисторы R1 и R2 устанавливаются в положение минимального сопротивления и подключают эквиваленты нагрузок RH. На вход устройства подается напряжение питания 12 В и с помощью резистора R1 на нагрузке Rн устанавливается напряжение 15 В. Далее напряжение питания уменьшают до 4В и резистором R2 добиваются напряжения на выходе также 15 В. Повторяя этот процесс несколько раз, добиваются стабильного напряжения на выходе.

Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователи одинаковы. Обмотки намотаны на броневом магнитопроводе Б26 из феррита 1500НМ. Обмотка I содержит 8 витков провода ПЭЛ 0,8, а II — 6 витков провода ПЭЛ 0,33 (каждая из обмоток III и IV состоит из 15 витков провода ПЭЛ 0,33 мм).

Малогабаритный сетевой преобразователь напряжения

Схема простого малогабаритного преобразователя сетевого напряжения, выполненного из доступных элементов, показана на рис. 11. В основе устройства обычный блокинг-генератор на транзисторе VT1 (КТ604, КТ605А, КТ940).

Рис. 11. Схема понижающего преобразователя напряжения на основе блокинг-генератора.

Трансформатор Т1 намотан на броневом сердечнике Б22 из феррита М2000НН. Обмотки Іа и Іб содержат 150+120 витков провода ПЭЛШО 0,1 мм. Обмотка II имеет 40 витков провода ПЭЛ 0,27 мм III — 11 витков провода ПЭЛШО 0,1 мм. Вначале наматывается обмотка Іа, затем — II, после — обмотка lb, и, наконец, обмотка III.

Источник питания не боится короткого замыкания или обрыва в нагрузке, однако имеет большой коэффициент пульсаций напряжения, низкий КПД, небольшую выходную мощность (до 1 Вт) и значительный уровень электромагнитных помех. Питать преобразователь можно и от источника постоянного тока напряжением 120 6. В этом случае резисторы R1 и R2 (а также диод VD1) следует исключить из схемы.

Слаботочный преобразователь напряжения на 440В

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гейгера-Мюллера может быть собран по схеме на рис. 12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор СЗ через выпрямительные диоды VD2, VD3 до напряжения 440 В.

Конденсатор СЗ должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, С2.

Рис. 12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера.

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16x10x4,5 3000НМ и изолируют его слоем лакоткани, тефлона или фторопласта.

В начале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения. При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4... 1,0 мА.

Преобразователь напряжения для питания фотовспышки

Преобразователь напряжения (рис. 13) предназначен для питания фотовспышки. Трансформатор Т1 выполнен на магнитопроводе из двух сложенных вместе пермаллоевых колец К40х28х6. Обмотка коллекторной цепи транзистора VT1 имеет 16 витков ПЭВ-2 0,6 мм; его базовой цепи — 12 витков такого же провода. Повышающая обмотка содержит 400 витков ПЭВ-2 0,2.

Рис. 13. Схема преобразователя напряжения для фотовспышки.

Неоновая лампа HL1 использована от стартера лампы дневного света. Выходное напряжение преобразователя плавно повышается на конденсаторе фотовспышки до 200 В за 50 секунд. Устройство при этом потребляет ток до 0,6 А.

Преобразователь напряжения ПН-70

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью.

Вне зависимости от частоты следования вспышек света генератор работает непрерывно, расходуя большое количество энергии и разряжая батареи.

Рис. 14. Схема модифицированного преобразователя напряжения ПН-70.

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — ѴТЗ по схеме Дарлингтона.

Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением резистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя.

Когда напряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя. Транзистор ѴТ1 должен быть установлен на медном радиаторе размерами 50x22x0,5 мм.

Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.

Полумостовая схема построения ключевого каскада.
Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.

Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).
Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.


В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).

Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше.
Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.

Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.

Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех. Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.
Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).
Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.

Обратная связь по току или по напряжению.

Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.

В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.
Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.

В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.
Обратная связь по напряжению слабо зависит от нагрузки. Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать.
При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.

Двухтактная схема инвертора с ОС по напряжению

Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы.
Схема состоит из нескольких независимых блоков:

      • — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
      • — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
      • — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
      • — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.

Сразу после включения питания 220 вольт начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7). От него запускающие импульсы поступают на базу транзистора Т2. Происходит запуск автогенератора.
Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы.
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9 — Д12 (двухполупериодное выпрямление) и сглаживается конденсатором С5.
На выходе получается постоянное напряжение заданной величины.
Трансформатор Т1 используется для передачи импульсов обратной связи от выходного трансформатора Тр2 на базы ключевых транзисторов Т1 и Т2.


Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:

    • — ферритовый сердечник выходного трансформатора Тр2 работает с активным перемагничиванием (наиболее полно используется магнитный сердечник по мощности);
    • — напряжение коллектор – эмиттер Uэк на каждом транзисторе не превышает напряжение источника постоянного тока в 310 вольт;
    • — при изменении тока нагрузки от I = 0 до Imax, выходное напряжение изменяется незначительно;
    • — выбросы высокого напряжения в первичной обмотке трансформатора Тр2 очень малы, соответственно меньше уровень излучаемых помех.

И еще одно замечание в пользу двухтактной схемы!!

Сравним работу двухтактного и однотактного автогенераторов с одинаковой нагрузкой.
Каждый ключевой транзистор Т1 и Т2 за один такт работы генератора используется всего половину времени (одну полуволну), вторую половину такта «отдыхает». То есть вся вырабатываемая мощность генератора, делится пополам между обоими транзисторами и передача энергии в нагрузку идет непрерывно (то от одного транзистора, то от другого), во время всего такта. Транзисторы работают в щадящем режиме.
В однотактном же генераторе накопление энергии в ферритовом сердечнике происходит во время половины такта, во второй половине такта идет ее отдача в нагрузку.

Ключевой транзистор в однотактной схеме работает в четыре раза более напряженном режиме, чем ключевой транзистор в двухтактной схеме.

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай).

В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не , он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки.

Тем не менее, несмотря на то, что это именно импульсный трансформатор с фиксированным коэффициентом трансформации, напряжение стабилизации выхода двухтактника все равно может изменяться посредством варьирования ширины рабочих импульсов (с помощью ).

В силу высокой эффективности (КПД до 95%) и наличия гальванической развязки первичной и вторичной цепей, двухтактные импульсные преобразователи широко используется в стабилизаторах и инверторах мощностью от 200 до 500 Вт (блоки питания, автомобильные инверторы, ИБП и т.д.)

На рисунке ниже изображена общая схема типичного двухтактного преобразователя. Как первичная, так и вторичная обмотки имеют отводы от середин, чтобы в каждый из двух рабочих полупериодов, когда активен только один из транзисторов, была бы задействована своя половина первичной обмотки и соответствующая половина вторичной обмотки, где напряжение упадет лишь на одном из двух диодов.

Применение двухполупериодного выпрямителя с диодами Шоттки, на выходе двухтактного преобразователя, позволяет снизить активные потери и повысить КПД, ведь экономически гораздо целесообразнее намотать две половины вторичной обмотки, чем нести потери (финансовые и активные) с диодным мостом из четырех диодов.

Ключи в первичной цепи двухтактного преобразователя (MOSFET или IGBT) должны быть рассчитаны на удвоенное напряжение питания, чтобы выдержать действие не только ЭДС источника, но и добавочное действие ЭДС, наводимых во время работы друг друга.

Особенности устройства и режима работы двухтактной схемы выгодно отличают ее от полумостовой, прямоходовой и обратноходовой. В отличие от полумостовой, здесь нет необходимости развязывать цепь управления ключами от входного напряжения. Двухтактный преобразователь работает как два однотактных прямоходовых преобразователя в одном устройстве.

К тому же, в отличие от прямоходового, духтактному преобразователю не нужна ограничительная обмотка, так как один из выходных диодов продолжает проводить ток даже при закрытых транзисторах. Наконец, в отличие от обратноходового преобразователя, в двухтактнике ключи и магнитопровод используются более щадящим образом, а эффективная длительность импульсов больше.

Во встроенных блоках питания электронных устройств все более популярны двухтактные схемы с управлением по току. При таком подходе проблема повышенного напряжения на ключах исключается на корню. В общую истоковую цепь ключей включается резистор-шунт, с которого снимается напряжение обратной связи для защиты по току. Каждый цикл работы ключей ограничивается по длительности моментом достижения током заданной величины. Под нагрузкой выходное напряжение, как правило, ограничивается посредством ШИМ.

При проектировании двухтактного преобразователя особое внимание уделяют подбору ключей, чтобы сопротивление открытого канала и емкость затвора были бы как можно меньше. Для управления затворами полевых транзисторов в двухтактном преобразователе чаще всего применяют микросхемы-драйверы затворов, которые легко справляются со своей задачей даже на частотах в стони килогерц, свойственных импульсным источникам питания любой топологии.

Что делает эмбеддер, когда ему делать нечего? Разумеется, исследует двухтактные автогенерирующие преобразователи! Делать, на самом деле, есть чего, и много, но что-то лень. Потому сегодня я все равно буду исследовать двухтактный автогенерирующий преобразователь. Вот такой: Так, как на рисунке выше, их рисуют в книжках, но мне эта рисовка не нравится; мало того, что в таком начертании преобразователь смахивает на мультивибратор (что далековато от истинного принципа его работы), так еще и выход находится сверху (на первой картинке я это все же слегка поправил). Потому я предлагаю свой вариант:
Картинка немного забегает вперед — откуда взялись все эти цифры я объясню по ходу статьи. Сначала рассмотрим общий принцип работы схемы. При подаче питания первым откроется тот транзистор, напряжение база-эмиттер которого меньше или коэффициент передачи тока которого больше (совершенно одинаковых транзисторов в природе не бывает). Пускай это будет T2. Тогда через обмотку B начнет протекать нарастающий ток. При этом обмотки A и B вместе работают как автотрансформатор, в результате чего к базе T2 через резистор R2 будет приложено напряжение, даже большее напряжения питания. Это гарантирует насыщение транзистора (т.к. оба перехода, коллекторный и эмиттерный, оказываются открыты). T1 при этом закрыт, ибо напряжение на коллекторе насыщенного T2 мало. T2 открыт, ток через обмотку B растет, все классно. Однако продолжаться это будет ровно до тех пор, пока магнитопровод трансформатора не войдет в насыщение. Как только это случится, индуктивности обмоток резко упадут, а, следовательно, ток через них начнет стремиться к бесконечности, ограниченный практически только сопротивлением обмотки. В самом деле, ведь

UPD: Более подробно и корректно работу этой схемы я разобрал .

Как и у всего на земле, у такого преобразователя есть плюсы и минусы. Первый и самый очевидный плюс — фантастическая простота. Требуется всего четыре детали, не считая трансформатора. Также к плюсам можно отнести то, что трансформатор в таком преобразователе никогда не войдет в насыщение слишком далеко, что ограничивает потери. Кроме того, это настоящая двухтактная схема, так что трансформатору не нужен зазор, а это означает, что в ход можно пустить, например, колечки от сберегаек (что я и собираюсь сделать дальше). При всех плюсах минусов у этой схемы тоже хватает. Во-первых, входить в насыщение магнитопровод все же будет, так что будут потери, которых можно было бы избежать. Во-вторых, видно, что возможность работы такого преобразователя теснейшим образом завязана на реальные свойства магнитопровода трансформатора (погрешность указания которых в даташитах достигает 30%) и немного на неидеальности транзисторов. То есть, рассчитать такой преобразователь невозможно — его параметры можно только примерно прикинуть, ну или померять на реальной схеме. Рабочая частота будет определяться тем, насколько быстро магнитопровод будет входить в насыщение, то есть, она будет зависеть от входного напряжения. Выше я говорил о колечках от сберегаек. Для тороидального сердечника выражение для индукции в магнитопроводе следующее: где μ — магнитная проницаемость колечка, μ 0 — магнитная постоянная , N — количество витков обмотки, I — ток в обмотке, R — радиус колечка. Скорость нарастания тока в обмотке пропорциональна приложенному напряжению (см. самую первую формулу), то есть скорость нарастания магнитного потока тоже будет ему пропорциональна, то есть рабочая частота будет зависеть от входного напряжения. При этом абсолютное значение индукции будет пропорционально произведению количества витков на ток, потому ток холостого хода будет определяться количеством витков в обмотках A и B (чем больше витков, тем при меньшем токе будет достигнуто насыщение). Отсюда следует еще один недостаток — чтобы получить малый ток холостого хода, надо мотать много провода, что в случае тороидального сердечника особенно утомительно. Ну и ток холостого хода тоже будет зависеть от приложенного напряжения. Из всего сказанного можно сделать вывод о том, что такая схема подходит тогда, когда простота преобразователя перевешивает необходимость в точной предсказуемости и качестве его характеристик. Например, в случае, когда стоит цель немного развлечься весенним вечером.

Перейдем от теории к практике. У меня в закромах лежало неопознанное колечко, добытое из сберегайки. Его диаметр 10 мм, высота — 3.5 мм, толщина — 2 мм. То есть, оно смахивает на колечко EPCOS R 10 x 6 x 4 .
Я намотал на него 10 витков провода и померял индуктивность получившейся катушки. Вышло 286 мкГн, что соответствует проницаемости около 8000. То есть, по даташиту выше, материал колечка — либо T37 , либо T38 . Индукция насыщения у них — что-то около 400 мТ. Я прикинул, что не лень мотать мне будет не более 15 витков. По второй формуле можно посчитать, что при этом ток насыщения будет что-то около 65 мА. Нормально; вполне укладывается в возможности основных «просто транзисторов» — BC547/847/817. После этого я намотал обмотки — первичную, 15 витков в два провода, и вторичную, 63 витка (сколько осилил). Коэффициент трансформации получился 4.2, то есть, из 1.5 В получим примерно 6.3 В.
Собрал схему. В базы транзисторов поставил резисторы по 510 Ом (какие нашел). При этом при минимальном входном напряжении (я принял минимумом 0.9 В с прицелом на батарейку в качестве источника) ток базы будет достаточен, чтобы при минимальном коэффициенте передачи тока транзисторов (по традиции принимается 100) обеспечить ток коллектора, достаточный для насыщения трансформатора (выше посчитали около 65 мА). Собрал:
Подал 1.5 В. Заработало!
На выходе 6.3 В RMS, ровно как проектировали. Можно поставить схему выпрямления с удвоением и получить 12 В. Напряжение на коллекторах:
Видно, что амплитуда импульсов равна 3 В, то есть, в два раза больше напряжения питания. Так что практика и впрямь совпадает с теорией — первичная обмотка работает как автотрансформатор. Напряжение на базах (не верьте измерению частоты, осциллограф глючит из-за выбросов; сетка по времени та же, что и выше):
Потребляемый ток. Мерял напряжение на резисторе в 10 Ом, включенном последовательно с преобразователем:
Около 76 мА в пике. По второй формуле можно вычислить индукцию насыщения — получается около 457 мТ, то есть, феррит, видимо, все же T38. Средний ток холостого хода при напряжении 1.5 В составил около 30 мА. Запускается преобразователь при входном напряжении 0.5 В. Как по мне, такая схема — отличный способ применить колечки от сберегаек в простых преобразователях 1.5 — 5 В/3.3 В. Разумеется, хорошо бы еще на выходе поставить стабилизатор (с диодным мостом, разумеется), в простейшем случае — линейный, ту же L78L33. КПД такого решения будет не особо, зато по себестоимости и простоте оно обойдет, наверное, даже китайские изделия.