Гипсокартон

Измерение высоты дерева. Прикладная геодезия. Измеряем высоту карандашом, зеркалом или воздушным шариком Измерение высоты дерева

Измерение высоты дерева. Прикладная геодезия. Измеряем высоту карандашом, зеркалом или воздушным шариком Измерение высоты дерева

Измерение высоты мерной вилкой. Высоту дерева можно определить мерной вилкой. Для этого ее надо соответствующим образом наладить.

1. В неподвижной ножке на расстоянии 5... 8 см от ее конца просверлить небольшое отверстие.

2. На подвижной ножке точно против отверстия отметить черту и принять ее за нулевое деление. Вправо и влево от нуля нанести косые сантиметровые деления, причем влево от нуля черточки наносят с наклоном влево, а с правой стороны- вправо.

3. Снабдить мерную вилку нитью с отвесом.

Измеряют высоту следующим образом. Мерщик отмеряет от дерева расстояние, примерно равное высоте дерева, и выбирает такое место, чтобы хорошо видна была вершина и основание дерева, например на расстоянии 24 м. Подвижную ножку отодвигает на число сантиметров, равное чис„ у метров от дерева до наблюдателя (в нашем примере 24 см) и закрепляет в этом положении стопором. По внутренней грани неподвижной ножки

визирует на вершину дерева. При этом нить с отвесом займет вертикальное положение и пересечет некоторое число делений на подвижной ножке, которое соответствует высоте дерева от уровня глаза наблюдателя до вершины (2.3).

В равнинной местности, чтобы пол,чить всю высоту дерева, необходимо к полученному отсчету прибавить рост мерщика. В горной местности, если основание ствола расположено ниже наблюдателя, сначала визируют на вершину дерева и делают отсчет, затем визируют на основание. Сумма отсчетов на вершину и на основание ствола и будет высота всего ствола. Если, наоборот, основание ствола расположено выше наблюдателя, то высота ство а будет равна разности отсчетов на вершину и на основание. Погрешность измерений высоты дерева мерной вилкой составляет ±5 ... 8 %

Маятниковый высотомер . Маятниковый высотомер, предложенный таксатором Н. И Макаровым, представляет собой плоскую стальную пластину размером 8X10 см в виде сектора. С лицевой стороны сектора закреплен маятник и нанесены две шкалы высот: верхняя для измерения высоты при базисе 10 м и нижняя для измерения высоты при базисе 20 м. На шкалах деления нанесены по обе стороны от нулевого деления. К секторной пластине высотомера припаяна визирная трубка, глазной

диоптр, который расширен в виде воронки (2.4). На оборот ной стороне сектора по оси маятника имеется фиксатор в виде кнопки. При нажатии пачьием на кнопку маятник приходит в движение и принимает отвесное положение; при снятии пальца с кнопки пружина прижимает маятник к пластине и он оста- нав тивается.

Для измерения высоты дерева маятниковым высотомером поступают следующим образом:

1. Отмеряют от дерева базис 10 м или 20 м в горизонтальном проложении, причем если высота дерева до 15 м отмеряют 10 м, если более 15 м отмеряют 20 м.

2. Берут высотомер в правую руку так, чтобы большой палец был прижат к выемке под шкалой, а указательный - к визирной трубке.

3. Через глазной диоптр визирной трубки визируют на вершину дерева и одновременно указательным пальцем левой руки нажимают на кнопку.

Когда маятник остановится, а вершина дерева будет в центре кружка, осторожно снимают палец левой руки с кнопки и производят отсчет по соответствующей шкале: при базисе в 10 м пэ 10-метровой шкале, а при базисе 20 м по 20-метровой (2.5) Этот отсчет и есть высота дерева от уровня глаза наблюдателя до вершины. Для получения всей высоты необходимо прибавить к ней высоту до уровня глаз наблюдателя.

Если основание дерева находится ниже глаза наблюдателя, то высота дерева равна сумме отсчетов на вершину и основание дерева. Если основание дерева находится выше наблюдателя, то высота дерева равна разности отсчетов на вершину и на основание.

Маятниковый высотомер зарекомендовал себя,^ак прибор, удобный в работе, имеющий простую конструкцию. Погрешность измерения высоты дерева =п5 %, Для получения более точных результатов необходимо вычислить среднеарифметическое значение из двух-трех измерений.

Высотомер-угломер лесной ВУЛ-1. Высотомер-угломер предназначен для измерения высоты растущих деревьев, измерения расстояния (базиса) и определения угла наклона на местности. Он состоит из корпуса, внутри которого на оси подвешен барабан с балансиром, обеспечивающим постоянное положение шкал по отношению к горизонту (2.6К

На барабан нанесены шкалы дл» измерения высоты деревьев с базисного расстояния 15 и 20 м. На каждой шкале нанесены деления в метрах (с правой стороны) для измерения высоты и деления в градусах (с левой стороны) для измерения угла наклона. Базисное расстояние определяют дальномером с использованием специальной ленты из резинотканевой клеенки.

На крышке корпуса имеется шкала для определения базисного расстояния в метрах с учетом вертикального угла (шкала поправок) и тормозное устройство.

Порядок работы при определении высоты дерева на ровной местности:

выбрать место, с которого хорошо видны его основание и вершина;

закрепить базисную ленту на стволе дерева так, чтобы ее первый штрих находился на уровне глаза;

визируя на базисную лент, через дальномер, добиться, чтобы первый штрих ленты совместился со штрихом 15 м или 20 м; одно деление ленты соответствует 1 м расстояния до дерева;

визировать через окуляр высотомера на вершин\ дерева и одновременно нажать на кнопку тормозного устройства;

когда барабан остановится и визирная линия высотомера совпадет с вершиной дерева, снять палец с кнопки и произвести отсчет, КОТОРЫЙ соответствует высоте дерева от уровня глаза наблюдателя до вершины дерева.

Для получения всей высоты дерева необходимо к полученному отсчету прибавить расстояние до уровня глаза наблюдателя.

При определении высоты дерева на наклонной местности необходимо:

закрепить базисную ленту на стволе дерева; с помощью дальномера определить расстояние до дерева (15 или 20 м);

определить угол наклона в градусах, для чего необходимо визировать на верхний штрих ленты;

определить точное расстояние, с которого будет производиться измерение высоты дерева по шкале, находящейся на корпусе высотомера с учетом вертикального угла;

визировать с этого расстояния на вершину дерева и производить отсчет, затем визировать на основание дерева.

Высотомер-крономер ВК-1 . Высотомер предназначен для измерения высоты дерева, расстояний, угла наклона на местности и радиуса крон растущих деревьев. Он смонтирован в металлическом корпусе и состоит из цвух блоков и логарифмического калькулятора. В одном блоке в герметически закрытой камере установлен подвешенный на оси диск, на котором нанесены шкалы: угломерная и высотомерная. В камере вмонтированы отражательная призма с отсчетным индексом и лупа, являющиеся частью визирной системы. Во втором блоке установлена пенто- призма, с помощью которой высотомер-крономер переключается на вертикальное визирование (2.7).

Ниже визирной системы установлен дальномер, состоящий из биопризмы, объектива и окуляра. Грани биопризмы смещают наблюдаемое изображение шкалы (базисной ленты) во взаимно противоположных направлениях (вверх и вниз), образуя сдвоенное изображение.

Логарифмический калькулятор состоит из двух шкал: подвижной и неподвижной. На подвижной шкале дополнительно нанесена шкала поправок на уклон местности, оцифрованная в градусах. На поверхности корпуса находится маховичок, служащий для переключения призмы при измерении высоты или кроны дерева. При измерении высоты точка на головке маховичка должна находиться против буквы Н на корпусе, при измерении кроны - против буквы R.

Измерение высоты дерева высотомером-крономером выполняют следующим образом:

1. Выбирают место, с которого хорошо видны основание и вершина дерева.

2. Подвешивают базисную ленту на стволе дерева так, чтобы ее середина находилась на высоте глаза наблюдателя.

3. Визируя через дальномер на базисную ленту, производят отсчет расстояния по величине взаимного смещения ее изображения.

4. Визируя на середину базисной ленты, определяют уклон

5. После этого, визируя на вершину и на основание дерева, по высотомерной шкале производят отсчеты.

6. На неподвижной шкале калькулятора отыскивают деление, соответствующее базису, и с ним совмещают начало подвижной шкалы (цифра 10) или при наличии уклона - его значение (оцифровка в градусах).

Затем на подвижной шкале находят деление, соответствующее сумме отсчетов по высотомерной шкале, и против него на неподвижной шкале берут значение зысоты дерева. Среднеквад- ратическая погрешность измерения составляет не более, %: высоты деревьев ±3; расстояний ±1; крон деревьев ±4; уклонов местности ±30".

Высотомер Блюме - Лейсса. Он имеет корпус в виде сектора круга (2.8) и диоптры: глазной и предметный, расположенные на концах верхней грани корпуса высотомера. Ниже предметного диоптра находится спускной крючок, который закрепляет в нужном положении маятник высотомера. На оборотной стороне корпуса прикреплена табличка для внесения поправок в зависимости от крутизны склона. Высота деревьев определяется по четырем дугообразным шкалам при различной величине базиса (15, 20, 30, 40 м).

Отличие высотомера Блюме - Лейсса от высотомера Макарова заключается в том, что для измерения расстояния до дерева используется базисная складная лента с делениями 0, 15, 20, 30 и 40, играющая роль дальномерной рейки. Наблюдатель отходит от измеряемого дерева на такое расстояние, чтобы хорошо видно было вершину и основание дерева, и, передвигаясь назад или вперед на несколько шагов, ищет в оптическом измерителе одно из четырех чисел (15, 20, 30 или 40), находящихся на базисной ленте на том же уровне, что и нулевое деление. Если, например, нулевое деление стоит на одном уровне с делением 30, это означает, что от наблюдателя до дерева 30 метров.

После этого необходимо нажать на кнопку, находящуюся на оборотной стороне высотомера, и освободить маятник. Сначала визируют на вершину дерева и, как только маятник, перестанет качаться, нажимают пальцем на спускной крючок, и маятник остановится на том делении шкалы, которое будет соответствовать высоте дерева от уровня глаза.

Измерение высоты дерева

Для измерения высоты стоящего дерева применяют различные приборы и приспособления. На практике чаще всего используют мерную вилку, эклиметр и маятниковый высотомер. Высоту дерева можно также определить с помощью двух вешек (рис. 23). Одна вешка должна быть равна росту наблюдателя, а вторая выше его. При визировании на вершину дерева должна получиться прямая линия АВ ′В, проходящая через вершины вешек на вершину дерева. Способ основан на определении сторон подобных треугольников, поэтому уклон местности не имеет значения. Треугольники ABC и АВ С ′ подобны, а стороны их пропорциональны друг другу. В С ′: ВС = АС ′: АС ; В С ′ разница в длине вешек. Расстояния АС ′ и АС измеряют рулеткой. Высчитав ВС и прибавив рост наблюдателя h н, получают высоту дерева Н д

H д =BC+h н = B"C"AC +h н
AC"

Часто высоту дерева определяют также мерной вилкой (рис. 24). В равнинных условиях техника измерения складывается из следующих приемов. Наблюдатель отходит от дерева в сторону примерно на расстояние, равное высоте дерева, это расстояние точно измеряют рулеткой. Подвижную ножку мерной вилки отодвигают от неподвижной на число сантиметров, соответствующее количеству метров от дерева до наблюдателя, и закрепляют ее винтом, Затем визируют на вершину дерева по внутренней грани неподвижной ножки вилки, приложив ее ко лбу. Шнур с отвесом пересекает при этом некоторое число делений на подвижной ножке. Показанное шнуром отвеса число сантиметров, замененное метрами, плюс рост наблюдателя (примерно 1,5 м) будет высотой дерева. Если измеряемое дерево находится на склоне ниже наблюдателя, то сначала визируют на вершину и берут отсчет. Затем визируют на основании дерева и также берут отсчет. Сложив оба отсчета, получают число, равное высоте дерева. Если дерево находится выше наблюдателя, то из первого отсчета вычитают второй . Точность измерения деревьев мерной вилкой не выше ±0,5 м.

Для замеров высот эклиметром используют специальную таблицу определения высот по замеренным им углам наклона в градусах на расстояний от дерева 10; 15 или 20 м (табл. 14).

На пересеченной местности измеряют углы сначала на вершину, а затем на основании дерева. По таблицам находят высоты Н и h (рис. 25). Высота дерева определяется как разность Н - h (см. рис. 25, а) или сумма H + h (см. рис. 25,б).

Простейший прием измерения высоты дерева эклиметром (рис. 26) заключается в следующем. Наблюдатель отходит от дерева примерно на расстояние, равное высоте дерева, и визирует на его вершину. Если на шкале менее 45°, необходимо приблизиться к дереву, если больше 45°, необходимо удалиться от него и повторить визирование. Удаляясь от дерева или приближаясь к нему, следует принять такое положение, чтобы на шкале было 45°. Расстояние от этой точки до дерева плюс рост наблюдателя дадут высоту дерева.

При использовании маятникового высотомера наблюдатель отходит от дерева на 10; 20 или 30 м в зависимости от его высоты. При высоте дерева до 15 м визируют с расстояния 10 м, при высоте дереза 15 - 20 м визируют с отметкой, которая находится в 20 м от дерева. Если по предварительному (глазомерному) определению высота дерева более 25 м, то отходят на расстояние 30 м. Отсчет высоты дерева производят по верхней шкале, если наблюдатель находится на 10-метровой отметке, по нижней шкале - при 20-метровой отметке, по сумме отсчетов двух шкал, когда наблюдатель проводит замер дерева с 30-метровой отметки. Прибавив к полученному отсчету 1,8 м (примерный рост наблюдателя), получают высоту дерева.

На пересеченной местности визируют дважды: на вершину и на основание. Действия в этом случае аналогичны работе с мерной вилкой.

Погрешность измерения высоты дерева высотомером составляет ±5%.

Начиная со второй половины 60-х в Советском Союзе была довольно популярна песня, написанная Александрой Пахмутовой и Николаем Добронравовым и называвшаяся «Обнимая небо…». Исполнял ее тогда замечательный певец Юрий Гуляев. Многие люди старшего поколения (особенно из авиационной среды) эту песню помнят и любят.

Хорошая такая, задушевная мелодия:-). Но дело, вобщем-то, сейчас не в ней. А вспомнил я ее потому, что когда думал о теме новой статьи, в голове проскочила ассоциация с интересными словами из текста этой песни: «Есть одна у лётчика мечта — высота, высота.»

Вот эти-то слова меня, можно сказать, и зацепили:-). Сайт существует уже больше года, пишутся статьи, говорили мы о скорости полета уже неоднократно, low pass даже вспомнили, а о таком (любому понятно:-)) важнейшем параметре, как высота полета самолета почему-то забыли.

Вернее не забыли, а забыл, потому что вопрос «почему» должен, конечно, адресовываться ко мне:-). Вот не знаю… Упустил из виду и все…. Однако сейчас мы этот пробел быстренько восполним.

Не знаю, что там за мечта у летчика из песни на самом деле, но без высоты полета не бывает. Как известно, «рожденный летать ползать не может» 🙂 (помните летчика Крошкина из фильма «Беспокойное хозяйство», переиначившего знаменитую фразу горьковской «Песни о соколе»?).

Итак, высота полета самолета , и как ее измеряют… Ну, что такое высота в данном случае, я думаю, не вопрос:-). Любой скажет, что это расстояние по вертикали от летящего самолета до точки на земной поверхности, выбранной за нулевую (точку отсчета) . Некоторый вопрос заключается в том, что это за точка.

Сам принцип измерения высотыс развитием авиации совершенствовался (что естественно:-)), и сейчас способов измерения существует несколько. Когда-то давно в морском деле существовал такой измерительный инструмент, как лот . По сути дела простая веревка с грузом на конце, по длине которой можно было судить о глубине места (нечто схожее с высотой:-)). Лот уже давно превратился в эхолот .

Понятно, что для воздушных путешествий веревка, как измерительный инструмент, так сказать, малоприемлема:-). Однако способ измерения, возникший на заре развития авиации (история которой гораздо короче истории морского флота), существует и по сей день. Этот способ барометрический .

Основан он на естественном явлении падения атмосферного давления с высотой. Падает оно в соответствии с условным распределением давления, температуры и плотности воздуха в атмосфере. Это распределение называется Международной стандартной атмосферой (МСА или ISA в английском).

Остается только, учитывая закономерности этого явления, отобразить его визуально, то есть, например, в виде указательной стрелки, перемещающейся по шкале, проградуированной в единицах высоты (метры или футы), и готов прибор, показывающий высоту полета самолета - высотомер . Второе его название – альтиметр (в латинском altus — высоко), используемое чаще за рубежом, а у нас почему-то считающееся устаревшим.

В принципе высотомер был готов еще в 1843 году, когда французский ученый Люсьен Види (Lucien Vidie ) изобрел всем известный барометр-анероид . Тогда, конечно, вряд ли кто задумывался о его применении в авиации. Но когда самолеты начали летать, как говорится, в полную силу, он оказался как нельзя кстати. Ведь ртутный барометр (имеющий еще более почтенный возраст) с собой в кабину не возьмешь:-).

Он хоть и более точен, но, понятно, для летательного аппарата (за исключением, быть может, воздушного шара) громоздок и неудобен. А вот компактный и чувствительный анероид вполне подходит, несмотря на определенные ошибки в измерениях.

Ошибок на самом деле хватает, как впрочем у любого аналогового прибора. Есть инструментальные из-за несовершенства изготовления прибора, есть аэродинамические из-за неточности измерения давления, особенно на высоте, есть и методические из-за того, что прибор не может, естественно, находясь на высоте в полете, учитывать изменения давления у земли, а также изменение температуры у земли, которая влияет (и ощутимо) на величину давления. Однако все эти ошибки уже давно научились учитывать.

Высотомер - это есть, по сути своей, барометр-анероид. Атмосферное давление подводится к его герметичному корпусу от , а в самом приборе чувствительная анероидная коробка, деформируясь, реагирует на его изменения, передавая эту свою реакцию через специальную кинематическую систему (ее еще называют передаточно-множительный механизм ) на указательную стрелку, двигающуюся по шкале, что и видит экипаж в кабине летательного аппарата.

Схема высотомера ВД-20.

Все барометрические высотомеры (как наши, так и зарубежные) имеют принципиально одинаковую конструкцию, но разных вариаций хватает 🙂 в зависимости от типа воздушного судна, порядка использования и дополнительных функций.

Первые высотомеры , использовавшиеся на старых самолетах оказались не очень-то удобны для визуального использования. Их лицевая панель была очень похожа на современные автомобильные спидометры . Стрелка была одна с пределом измерения от 0 до 1000. Причем полный круг она не описывала (как стрелка скорости у автомобильного спидометра).

А под этой стрелкой находились окошки с цифрами в них, в точности, как у автомобильного одометра , только показывали они, естественно, не пройденное расстояние, а тысячи футов (метров) высоты. То есть летчик по стрелке определял десятки и сотни метров высоты, а по цифровым окошкам тысячи.

Обычные барометрические указатели высоты полета самолета (высотомеры ) все двухстрелочные (встречаются и трехстрелочные). Их циферблат похож на циферблат часов, только количество цифровых секторов не двенадцать, а десять. Длинная стрелка (минутная:-)) делает один оборот при изменении высоты на 1000 м, при этом короткая (часовая:-)) перемещается только на один цифровой сектор.

То есть малая стрелка отсчитывает километры высоты (то есть, по сути дела, полную высоту), а большая – метры, причем эти стрелки могут работать как на одной шкале, так и каждая на своей.

Высотомер ВД-10.

Пределы измерения у приборов могут быть различны. Например, высотомеры ВД-10 , ВД-17 измеряют высоты до 10-ти тысяч метров и устанавливаются в основном на самолеты, максимальная высота полета которых не очень велика. А такие, как например ВД-20 (стоит на ТУ-134 , ТУ-154 ), ВД-28 (стоит на МИГ-29 ), ВДИ-30 (стоит на МИГ-23) имеют пределы измерения большие, соответствующие цифрам в их наименовании. То есть 20, 28 и 30 км высоты соответственно. Буквы во всех их названиях означают «высотомер двухстрелочный ».

Высотомер ВД-28.

Высотомер ВД-28.

Бывают и однострелочные, когда в наличии только одна, большая стрелка, но тогда на циферблате обязательно есть окошко в котором полная высота представлена цифрами (подобно вышеописанным старым высотомерам, но в более удобном виде:-)). Таков, например, высотомер УВИД-15(Ф) . Буква Ф означает «футовый». Это связано с тем, что высота в России и некоторых других странах из меряется в метрах, а во стальном мире в футах (1 фут равен 0,3048 м). Поэтому и приборы могут быт градуированы в метрах или в футах.

Или вот еще один высотомер, не наш, западный. Марки не знаю, но это и неважно. Важно другое. На нем, как вы видите аж три окошка с цифрами.

Альтиметр с окошками Колсманна.

Окошки эти (точнее два нижних) называют окнами Колсманна по имени американского изобретателя Пауля Колсманна (Paul Kolsmann , эмигрировал в Америку из Германии в 1923 году:-)), занимавшегося авиационными приборами. Он-то как раз эти окна и придумал. Для чего?

На самом деле – это очень важная вещь в деле контроля высоты полета самолета , и на каждом высотомере есть как минимум одно окно Колсманна. Кроме того все эти приборы имеют специальную кремальеру , кинематически связанную со шкалой, которая видна в этом окне. Шкала эта подвижна и на ней нанесены цифры, представляющие собой величину атмосферного давления.

Это давление может быть представлено на приборах в различных единицах измерения. В России используются миллиметры ртутного столба, в Америке и Канаде та же величина в дюймах (inch-ах , один дюйм (inch) равен 2,54 см), в Европе и других странах – в гектопаскалях (или миллибарах, что то же самое:-)).

В том «западном» высотомере это давление показано для удобства сразу в двух окошках (Колсманна). В левом в гектопаскалях, в правом в дюймах.

Для любого измерительного прибора, чтобы он осуществлял свои функции, требуется наличие нуля, точки отсчета . Для высотомера , соответственно, тоже должна быть какая-то начальная (нулевая) высота. А так как прибор барометрический , то эта высота должна соответствовать определенному начальному давлению, например, давлению того места откуда начинается полет. Вот это самое начальное давление как раз и устанавливается на высотомере в окошке Колсманна.

Хотя на самом деле таких «начальных давлений» в практике полетов существует несколько. Поэтому и определений высот полета самолета тоже несколько. Первая – это, пожалуй, истинная высота Н ист. . Это реальная высота полета, отсчитываемая от точки поверхности местности, над которой в данный момент пролетает самолет. Международное обозначение AGL (Above Ground Level).

Высотомер , как барометрический прибор, не меряет реальную высоту непосредственно. Он делает это косвенно, измеряя разность давлений между начальным давлением и давлением на той высоте, на которой он находится. Получаем так называемую барометрическую высоту. Она может довольно сильно отличаться от реальной высоты AGL. Все зависит от величины давления, установленной на высотомере.

Виды высот полета самолета.

Далее высота относительная Н отн. . Она отсчитывается от некоего условного уровня, обычно от уровня аэродрома, с которого взлетает (или на который садится) самолет. В международном обозначении эта высота — height и ей соответствует давление QFE (Q -code F ield E levation), то есть давление на уровне порога ВПП.

Еще одна высота это абсолютная Н абс . . Это высота полета самолета, отсчитываемая от условного (среднего) уровня моря. Международное обозначение – altitude . Этой высоте соответствует давление QNH (Q -code N autical H eight) означающее давление в данной точке земной поверхности, приведенное к уровню моря.

На всякий случай скажу, что значит «приведенное к уровню моря» (упрощенно:-)). Имеем вышеупомянутое давление в данной точке поверхности. Допустим, это давление на пороге ВПП, то есть QFE. Превышение (абсолютная высота) этой точки над уровнем моря известно (обычный топографический параметр:-)).

Кроме того, известна зависимость падения давления с высотой. Например, для небольших высот принято, что изменение высоты на 11,2 м соответствует изменению давления на 1мм рт. ст. (так называемая барометрическая ступень ) или подъем на высоту 800 м соответствует падению давления на 100 гПА.

Остается высоту нашей точки от уровня моря поделить на 11,2 (если за единицу измерения принимаем мм.рт.ст.) и полученное давление сложить с имеющимся (QFE, в данном случае). В итоге имеем давление в точке, если бы она находилась на уровне моря (то есть приведена к уровню моря).

Интересно, что средний уровень моря (международное обозначение MSL ) во ряде стран СНГ, в России и в Польше ведется с использованием Балтийской системы высот (то есть по уровню Балтийского моря в Кронштадте), а по стандартам ICAO с использованием системы WGS-84, которые не полностью совпадают.

Кроме того еще высоты полета самолета до 200 м именуются предельно малыми , от 200 до 1000 м малыми , от 1000 до 4000 м средними , от 4000 м до 12000 м большими и выше 12000 м – стратосферными .

Летчик, выруливая на взлетную полосу аэродрома с помощью вышеуказанной кремальеры устанавливает в окошке высотомера определенное давление, которое ему сообщает диспетчер (руководитель полетов). Для российских аэродромов – это давление QFE , то есть на высотомере при этом стоит высота, равная нулю.

Интересно, что так делается только в России (и в некоторых странах СНГ). В остальном мире перед вылетом на высотомере выставляется давление, приведенное к уровню моря, то есть QNH . И на высотомере у них уже до взлета стоит высота превышения аэродрома над уровнем моря (а вовсе не ноль, как у нас).

Далее самолет взлетает и в процессе полета летчик на определенных этапах полета выставляет на высотомере соответствующие давления, которые ему сообщает диспетчер (руководитель полетов). Сам этот порядок выставки строго регламентирован, потому что от него напрямую зависит безопасность полетов.

Высотомер (в первой половине XX в. - альтиметр , от лат. altus - "высоко", в современном английском языке также altimeter) - прибор, указывающий высоту полета. В настоящее время чаще используется определение высотомер . В авиации используются на барометрический и радиотехнический (иначе радиовысотомер ) способы определения высоты.

В современных радиовысотомерах используются частотный (радиовысотомеры малых высот) и импульсный (радиовысотомеры больших высот) методы измерения высоты. Они показывают истинную высоту полета, что является их преимуществом перед барометрическими высотомерами, так как барометрическая высота, как правило, отличается от истинной.

Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета косвенным путем, измеряя атмосферное давление, которое изменяется с высотой по определенному закону. Барометрический способ измерения высоты связан с рядом ошибок, которые, если их не учитывать, приводят к значительным погрешностям в определении высоты. Несмотря на это барометрические высотомеры ввиду простоты и удобства пользования широко применяются в авиации. Барометрические высотомеры имеют инструментальные, аэродинамические и методические ошибки.

  • Инструментальные ошибки высотомера возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенство изготовления механизмов высотомера, неточность и непостоянство регулировок, износ деталей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера на контрольной установке, заносятся в специальную таблицу и учитываются в полете.
  • Аэродинамические ошибки возникают в результате неточного измерения высотомером атмосферного давления на высоте полета вследствие искажения воздушного потока, обтекающего самолет, особенно при полете на больших скоростях. Величина этих ошибок зависит от скорости и высоты полета, типа приемника, воспринимающего атмосферное давление, и места его расположения. Например, на высоте 5000 м ошибка в измерении давления в 1 мм рт. ст. дает ошибку в высоте, равную 20 м, а на высоте 11 000 м такая же ошибка в измерении давления вызывает ошибку в измерении высоты около 40 м. Аэродинамические ошибки определяются при летных испытаниях самолетов и заносятся в таблицу поправок. Для упрощения учета инструментальных и аэродинамических поправок составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабине самолета.
  • Методические ошибки возникают вследствие несовпадения фактического состояния атмосферы с расчетными данными, положенными в основу для расчета шкалы высотомера. Шкала высотомера рассчитана для условий стандартной атмосферы (МСА) на уровне моря: давление воздуха P0 = 760 мм рт. ст., температура t0 = + 15° С, температурный вертикальный градиент trp = 6,5° на 1000 м высоты. Использование стандартной атмосферы предполагает, что заданной высоте соответствует вполне определенное давление. Но так как в каждом полете действительные условия атмосферы не совпадают с расчетными, то высотомер показывает высоту с ошибками. Барометрическому высотомеру присущи также ошибки вследствие того, что он не учитывает изменения топографического рельефа местности, над которой пролетает самолет. Методические ошибки барометрического высотомера делятся на три группы:
    • Ошибки от изменения атмосферного давления у земли. В полете барометрический высотомер измеряет высоту относительно того уровня, давление которого установлено на шкале давлений высотомера. Он не учитывает изменения давления по маршруту. Обычно атмосферное давление в различных точках земной поверхности в один и тот же момент неодинаково. Перед вылетом стрелки высотомера устанавливают на нуль, при этом шкала давлении высотомера установится на давление аэродрома вылета. Если пилот по маршруту над равнинной местностью будет выдерживать заданную приборную высоту, то истинная высота будет изменяться в зависимости от распределения атмосферного давления у земли. При падении атмосферного давления по маршруту истинная высота будет уменьшаться, при повышении давления увеличиваться. Изменение истинной высоты происходит вследствие изменения давления у земли над пролетаемой местностью относительно давления, установленного на высотомере. Изменение атмосферного давления с высотой характеризуют барометрической ступенью- высотой, соответствующей изменению давления на 1 мм рт. ст. Барометрическая ступень на различных высотах различна. С увеличением высоты барометрическая ступень увеличивается. В практике барометрическую ступень для малых высот берут равной 11м. Следовательно, каждому миллиметру изменения давления у земли соответствует 11,1 м высоты.
    • Ошибки от изменения температуры воздуха. Возникает из-за отклонения температуры у земли от значения температуры стандартной атмосферы. При уменьшении температуры у земли менее 15°С высотомер будет показывать заниженное значение высоты и наоборот. Температурная ошибка может достигать величины, равной 8-12% от измеряемой высоты. Температурную ошибку учитывают на

Инструкция

Установите альтиметр в режим начала работы. Первое, что вам стоит сделать - это выставить величину атмосферного давления. Исходный отсчет с того давления, которое может быть с вероятностью в 99% в времени, в который проводится измерение. Как (в зависимости от погодных условий), это величина колеблется от 950 до 1050 миллибар.

Откалибруйте датчик перед проведением замера. Для этого вам стоит обратить внимание на кнопку с направленной вверх стрелкой. Именно это поможет безошибочно определить те данные, которые вам требуются. Использование подсказок при включении главного меню прибора поможет вам провести все измерения и вычисления точно и быстро.

Проведите измерение исходных параметров для определения высоты. При удержании кнопки Set, которая есть во всех современных альтиметрах, автоматически в режим установок. Альтиметр покажет вам температуру воздуха и текущее давление, вычисленное на высоте. В таком случае вам предстоит уменьшить его до нормы над уровнем моря. Для этого нужно использовать кнопку со стрелкой и Set, которые смогут отрегулировать нужную вам величину. После этого есть два варианта вычисления высоты над уровнем моря. Первый – пошаговое изменение, которое выполняется вручную путем нажатия кнопок или в автоматическом режиме.

Перейдите в главное меню. После сохранения проведенных установок перейдите в режим главного меню. На дисплее отобразятся следующие данные – высота над уровнем моря и текущее атмосферное давление. Точность современных альтиметров – более 1 метра.

Обратите внимание

Внимательно относитесь к калибровке датчика. Ее стоит проводить столько раз, сколько замеров высоты над уровнем моря вы будете проводить. Такая необходимость постоянного регулирования связана с тем, что отклонения давления за день могут достигать 5 миллибар, а такая ошибка может служить причиной разбежки результатов величиной до нескольких десятков метров.

Полезный совет

При использовании альтиметра можно выбрать ту единицу измерения высоты, которая для вас наиболее удобна. Это могут быть футы, метры и др. (в зависимости от модели прибора). Для выбора единицы измерения стоит воспользоваться кнопкой со стрелкой. Если вам нужно сохранить полученные после проведения измерений данные, воспользуйтесь режимом сохранения – нажмите кнопку со стрелкой и Set. Альтиметр может работать в автоматическом режиме и фиксировать изменение данных с интервалом в 10 секунд.

Собираясь в горы, возьмите с собой альтиметр (высотометр), который позволит вам быть всегда информированным о высоте вашего нахождения. Это важно знать не только для ориентации, но для контроля за своим физическим состоянием.

Вам понадобится

  • - механический или электронный высотометр.

Инструкция

Используйте альтиметр для определения окружающих гор. Механический прибор основан на простом принципе зависимости атмосферного от высоты над уровнем моря. Давление падает с увеличением высоты, пружина в приборе раскручивается и стрелка высоту с точностью до 1 м в зависимости от количества делений на циферблате. Сейчас появились электронные альтиметры.

Произведите высоты с помощью механического прибора. Установите стрелку на отметку 0 до начала восхождения, прибор вам высоту в метрах, на которую вы поднялись. Учтите, что погодные условия очень влияют на показания прибора. Если в течение для резко меняется атмосферное давление, нужно проводить перенастройку.